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Foreword 
 
 
From a modest beginning in early 1984 at Gateway Design Automation, the Verilog 
hardware description language has become an industry standard as a result of extensive 
use in the design of integrated circuit chips and digital systems. Verilog came into being 
as a proprietary language supported by a simulation environment that was the first to 
support mixed-level design representations comprising switches, gates, RTL, and higher 
levels of abstractions of digital circuits. The simulation environment provided a powerful 
and uniform method to express digital designs as well as tests that were meant to verify 
such designs. 
 
There were three key factors that drove the acceptance and dominance of Verilog in the 
marketplace. First, the introduction of the Programming Language Interface (PLI) 
permitted users of Verilog to literally extend and customize the simulation environment. 
Since then, users have exploited the PLI and their success at adapting Verilog to their 
environment has been a real winner for Verilog. The second key factor which drove 
Verilog's dominance came from Gateways paying close attention to the needs of the 
ASIC foundries and enhancing Verilog in close partnership with Motorola, National, and 
UTMC in the 1987-1989 time-frame. The realization that the vast majority of logic 
simulation was being done by designers of ASIC chips drove this effort. With ASIC 
foundries blessing the use of Verilog and even adopting it as their internal sign-off 
simulator, the industry acceptance of Verilog was driven even further. The third and final 
key factor behind the success of Verilog was the introduction of Verilog-based synthesis 
technology by Synopsys in 1987. Gateway licensed its proprietary Verilog language to 
Synopsys for this purpose. The combination of the simulation and synthesis technologies 
served to make Verilog the language of choice for the hardware designers. 
 
The arrival of the VHDL (VHSIC Hardware Description Language), along with the 
powerful alignment of the remaining EDA vendors driving VHDL as an IEEE standard, 
led to the placement of Verilog in the public domain. Verilog was inducted as the IEEE 
1364 standard in 1995. Since 1995, many enhancements were made to Verilog HDL 
based on requests from Verilog users. These changes were incorporated into the latest 
IEEE 1364-2001 Verilog standard. Today, Verilog has become the language of choice for 
digital design and is the basis for synthesis, verification, and place and route 
technologies. 
 
Samir's book is an excellent guide to the user of the Verilog language. Not only does it 
explain the language constructs with a rich variety of examples, it also goes into details of 
the usage of the PLI and the application of synthesis technology. The topics in the book 
are arranged logically and flow very smoothly. This book is written from a very practical 
design perspective rather than with a focus simply on the syntax aspects of the language. 
 
This second edition of Samir's book is unique in two ways. Firstly, it incorporates all 
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enhancements described in IEEE 1364-2001 standard. This ensures that the readers of the 
book are working with the latest information on Verilog. Secondly, a new chapter has 
been added on advanced verification techniques that are now an integral part of Verilog-
based methodologies. Knowledge of these techniques is critical to Verilog users who 
design and verify multi-million gate systems. 
 
I can still remember the challenges of teaching Verilog and its associated design and 
verification methodologies to users. By using Samir's book, beginning users of Verilog 
will become productive sooner, and experienced Verilog users will get the latest in a 
convenient reference book that can refresh their understanding of Verilog. This book is a 
must for any Verilog user. 
 
Prabhu Goel 
 
Former President of Gateway Design Automation 
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Preface 
 
 
During my earliest experience with Verilog HDL, I was looking for a book that could 
give me a "jump start" on using Verilog HDL. I wanted to learn basic digital design 
paradigms and the necessary Verilog HDL constructs that would help me build small 
digital circuits, using Verilog and run simulations. After I had gained some experience 
with building basic Verilog models, I wanted to learn to use Verilog HDL to build larger 
designs. At that time, I was searching for a book that broadly discussed advanced 
Verilog-based digital design concepts and real digital design methodologies. Finally, 
when I had gained enough experience with digital design and verification of real IC 
chips, though manuals of Verilog-based products were available, from time to time, I felt 
the need for a Verilog HDL book that would act as a handy reference. A desire to fill this 
need led to the publication of the first edition of this book. 
 
It has been more than six years since the publication of the first edition. Many changes 
have occurred during these years. These years have added to the depth and richness of my 
design and verification experience through the diverse variety of ASIC and 
microprocessor projects that I have successfully completed in this duration. I have also 
seen state-of-the-art verification methodologies and tools evolve to a high level of 
maturity. The IEEE 1364-2001 standard for Verilog HDL has been approved. The 
purpose of this second edition is to incorporate the IEEE 1364-2001 additions and 
introduce to Verilog users the latest advances in verification. I hope to make this edition a 
richer learning experience for the reader. 
 
This book emphasizes breadth rather than depth. The book imparts to the reader a 
working knowledge of a broad variety of Verilog-based topics, thus giving the reader a 
global understanding of Verilog HDL-based design. The book leaves the in-depth 
coverage of each topic to the Verilog HDL language reference manual and the reference 
manuals of the individual Verilog-based products. 
 
This book should be classified not only as a Verilog HDL book but, more generally, as a 
digital design book. It is important to realize that Verilog HDL is only a tool used in 
digital design. It is the means to an end?the digital IC chip. Therefore, this book stresses 
the practical design perspective more than the mere language aspects of Verilog HDL. 
With HDL-based digital design having become a necessity, no digital designer can afford 
to ignore HDLs. 
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Who Should Use This Book 
  
 
The book is intended primarily for beginners and intermediate-level Verilog users. 
However, for advanced Verilog users, the broad coverage of topics makes it an excellent 
reference book to be used in conjunction with the manuals and training materials of 
Verilog-based products. 
  
 
The book presents a logical progression of Verilog HDL-based topics. It starts with the 
basics, such as HDL-based design methodologies, and then gradually builds on the basics 
to eventually reach advanced topics, such as PLI or logic synthesis. Thus, the book is 
useful to Verilog users with varying levels of expertise as explained below. 
  

• Students in logic design courses at universities 
 

• Part 1 of this book is ideal for a foundation semester course in Verilog HDL-
based logic design. Students are exposed to hierarchical modeling concepts, basic 
Verilog constructs and modeling techniques, and the necessary knowledge to 
write small models and run simulations. 

 
• New Verilog users in the industry 

 
• Companies are moving to Verilog HDL- based design. Part 1 of this book is a 

perfect jump start for designers who want to orient their skills toward HDL-based 
design. 

 
• Users with basic Verilog knowledge who need to understand advanced concepts 

 
• Part 2 of this book discusses advanced concepts, such as UDPs, timing 

simulation, PLI, and logic synthesis, which are necessary for graduation from 
small Verilog models to larger designs. 

 
• Verilog experts 

 
• All Verilog topics are covered, from the basics modeling constructs to advanced 

topics like PLIs, logic synthesis, and advanced verification techniques. For 
Verilog experts, this book is a handy reference to be used along with the IEEE 
Standard Verilog Hardware Description Language reference manual. 

  
 
The material in the book sometimes leans toward an Application Specific Integrated 
Circuit (ASIC) design methodology. However, the concepts explained in the book are 
general enough to be applicable to the design of FPGAs, PALs, buses, boards, and 
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systems. The book uses Medium Scale Integration (MSI) logic examples to simplify 
discussion. The same concepts apply to VLSI designs. 
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How This Book Is Organized 
  
 
This book is organized into three parts. 
  
 
Part 1, Basic Verilog Topics, covers all information that a new user needs to build small 
Verilog models and run simulations. Note that in Part 1, gate-level modeling is addressed 
before behavioral modeling. I have chosen to do so because I think that it is easier for a 
new user to see a 1-1 correspondence between gate-level circuits and equivalent Verilog 
descriptions. Once gate-level modeling is understood, a new user can move to higher 
levels of abstraction, such as data flow modeling and behavioral modeling, without losing 
sight of the fact that Verilog HDL is a language for digital design and is not a 
programming language. Thus, a new user starts off with the idea that Verilog is a 
language for digital design. New users who start with behavioral modeling often tend to 
write Verilog the way they write their C programs. They sometimes lose sight of the fact 
that they are trying to represent hardware circuits by using Verilog. Part 1 contains nine 
chapters. 
  
 
Part 2, Advanced Verilog Topics, contains the advanced concepts a Verilog user needs to 
know to graduate from small Verilog models to larger designs. Advanced topics such as 
timing simulation, switch-level modeling, UDPs, PLI, logic synthesis, and advanced 
verification techniques are covered. Part 2 contains six chapters. 
  
 
Part 3, Appendices, contains information useful as a reference. Useful information, such 
as strength-level modeling, list of PLI routines, formal syntax definition, Verilog tidbits, 
and large Verilog examples is included. Part 3 contains six appendices. 
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Conventions Used in This Book 
  
 
Table PR-1 describes the type changes and symbols used in this book. 
  
 
Table PR-1. Typographic Conventions 
 

 
Typeface or 

Symbol 
 

Description 
 

Examples 

 
AaBbCc123 

 
Keywords, system tasks and compiler 
directives that are a part of Verilog HDL 

 
and, nand, $display, 
`define 

 
AaBbCc123 

 
Emphasis 

cell characterization, 
instantiation 

 
AaBbCc123 

 
Names of signals, modules, ports, etc. 

 
fulladd4, D_FF, out 

 
A few other conventions need to be clarified. 
  
 

• In the book, use of Verilog and Verilog HDL refers to the "Verilog Hardware 
Description Language." Any reference to a Verilog-based simulator is specifically 
mentioned, using words such as Verilog simulator or trademarks such as Verilog-
XL or VCS. 

 
• The word designer is used frequently in the book to emphasize the digital design 

perspective. However, it is a general term used to refer to a Verilog HDL user or a 
verification engineer. 
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Part 1: Basic Verilog Topics
  

 

 
1 Overview of Digital Design with Verilog  HDL 
Evolution of CAD, emergence of HDLs, typical HDL-based design flow, why Verilog 
HDL?, trends in HDLs. 

 

 
2 Hierarchical Modeling Concepts 
Top-down and bottom-up design methodology, differences between modules and 
module instances, parts of a simulation, design block, stimulus block. 

 
 
3 Basic Concepts 
Lexical conventions, data types, system tasks, compiler directives. 

 
 
4 Modules and Ports 
Module definition, port declaration, connecting ports, hierarchical name referencing. 

 

 
5 Gate-Level Modeling 
Modeling using basic Verilog gate primitives, description of and/or and buf/not type 
gates, rise, fall and turn-off delays, min, max, and typical delays. 

 

 
6 Dataflow Modeling 
Continuous assignments, delay specification, expressions, operators, operands, operator 
types. 

 

 
7 Behavioral Modeling 
Structured procedures, initial and always, blocking and nonblocking statements, delay 
control, generate statement, event control, conditional statements, multiway branching, 
loops, sequential and parallel blocks. 

 

 
8 Tasks and Functions 
Differences between tasks and functions, declaration, invocation, automatic tasks and 
functions. 

 

 
9 Useful Modeling Techniques 
Procedural continuous assignments, overriding parameters, conditional compilation and 
execution, useful system tasks. 
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Chapter 1. Overview of Digital Design 
with Verilog HDL 
  
 

• Section 1.1.  Evolution of Computer-Aided Digital Design 
 

• Section 1.2.  Emergence of HDLs 
 

• Section 1.3.  Typical Design Flow 
 

• Section 1.4.  Importance of HDLs 
 

• Section 1.5.  Popularity of Verilog HDL 
 

• Section 1.6.  Trends in HDLs 
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1.1 Evolution of Computer-Aided Digital Design 
  
 
Digital circuit design has evolved rapidly over the last 25 years. The earliest digital 
circuits were designed with vacuum tubes and transistors. Integrated circuits were then 
invented where logic gates were placed on a single chip. The first integrated circuit (IC) 
chips were SSI (Small Scale Integration) chips where the gate count was very small. As 
technologies became sophisticated, designers were able to place circuits with hundreds of 
gates on a chip. These chips were called MSI (Medium Scale Integration) chips. With the 
advent of LSI (Large Scale Integration), designers could put thousands of gates on a 
single chip. At this point, design processes started getting very complicated, and 
designers felt the need to automate these processes. Electronic Design Automation (EDA)
techniques began to evolve. Chip designers began to use circuit and logic simulation 
techniques to verify the functionality of building blocks of the order of about 100 
transistors. The circuits were still tested on the breadboard, and the layout was done on 
paper or by hand on a graphic computer terminal. 
 
[1] The earlier edition of the book used the term CAD tools. Technically, the term 
Computer-Aided Design (CAD) tools refers to back-end tools that perform functions 
related to place and route, and layout of the chip . The term Computer-Aided Engineering 
(CAE) tools refers to tools that are used for front-end processes such HDL simulation, 
logic synthesis, and timing analysis. Designers used the terms CAD and CAE 
interchangeably. Today, the term Electronic Design Automation is used for both CAD 
and CAE. For the sake of simplicity, in this book, we will refer to all design tools as EDA 
tools. 
  
 
With the advent of VLSI (Very Large Scale Integration) technology, designers could 
design single chips with more than 100,000 transistors. Because of the complexity of 
these circuits, it was not possible to verify these circuits on a breadboard. Computer-
aided techniques became critical for verification and design of VLSI digital circuits. 
Computer programs to do automatic placement and routing of circuit layouts also became 
popular. The designers were now building gate-level digital circuits manually on graphic 
terminals. They would build small building blocks and then derive higher-level blocks 
from them. This process would continue until they had built the top-level block. Logic 
simulators came into existence to verify the functionality of these circuits before they 
were fabricated on chip. 
  
 
As designs got larger and more complex, logic simulation assumed an important role in 
the design process. Designers could iron out functional bugs in the architecture before the 
chip was designed further. 
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1.2 Emergence of HDLs 
  
 
For a long time, programming languages such as FORTRAN, Pascal, and C were being 
used to describe computer programs that were sequential in nature. Similarly, in the 
digital design field, designers felt the need for a standard language to describe digital 
circuits. Thus, Hardware Description Languages (HDLs) came into existence. HDLs 
allowed the designers to model the concurrency of processes found in hardware elements. 
Hardware description languages such as Verilog HDL and VHDL became popular. 
Verilog HDL originated in 1983 at Gateway Design Automation. Later, VHDL was 
developed under contract from DARPA. Both Verilog and VHDL simulators to simulate 
large digital circuits quickly gained acceptance from designers. 
  
 
Even though HDLs were popular for logic verification, designers had to manually 
translate the HDL-based design into a schematic circuit with interconnections between 
gates. The advent of logic synthesis in the late 1980s changed the design methodology 
radically. Digital circuits could be described at a register transfer level (RTL) by use of 
an HDL. Thus, the designer had to specify how the data flows between registers and how 
the design processes the data. The details of gates and their interconnections to 
implement the circuit were automatically extracted by logic synthesis tools from the RTL 
description. 
  
 
Thus, logic synthesis pushed the HDLs into the forefront of digital design. Designers no 
longer had to manually place gates to build digital circuits. They could describe complex 
circuits at an abstract level in terms of functionality and data flow by designing those 
circuits in HDLs. Logic synthesis tools would implement the specified functionality in 
terms of gates and gate interconnections. 
  
 
HDLs also began to be used for system-level design. HDLs were used for simulation of 
system boards, interconnect buses, FPGAs (Field Programmable Gate Arrays), and PALs 
(Programmable Array Logic). A common approach is to design each IC chip, using an 
HDL, and then verify system functionality via simulation. 
  
 
Today, Verilog HDL is an accepted IEEE standard. In 1995, the original standard IEEE 
1364-1995 was approved. IEEE 1364-2001 is the latest Verilog HDL standard that made 
significant improvements to the original standard. 
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1.3 Typical Design Flow 
  
 
A typical design flow for designing VLSI IC circuits is shown in Figure 1-1. Unshaded 
blocks show the level of design representation; shaded blocks show processes in the 
design flow. 
  

 
Figure 1-1. Typical Design Flow 
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The design flow shown in Figure 1-1 is typically used by designers who use HDLs. In 
any design, specifications are written first. Specifications describe abstractly the 
functionality, interface, and overall architecture of the digital circuit to be designed. At 
this point, the architects do not need to think about how they will implement this circuit. 
A behavioral description is then created to analyze the design in terms of functionality, 
performance, compliance to standards, and other high-level issues. Behavioral 
descriptions are often written with HDLs.[2] 
 
[2] New EDA tools have emerged to simulate behavioral descriptions of circuits. These 
tools combine the powerful concepts from HDLs and object oriented languages such as 
C++. These tools can be used instead of writing behavioral descriptions in Verilog HDL. 
  
 
The behavioral description is manually converted to an RTL description in an HDL. The 
designer has to describe the data flow that will implement the desired digital circuit. 
From this point onward, the design process is done with the assistance of EDA tools. 
  
 
Logic synthesis tools convert the RTL description to a gate-level netlist. A gate-level 
netlist is a description of the circuit in terms of gates and connections between them. 
Logic synthesis tools ensure that the gate-level netlist meets timing, area, and power 
specifications. The gate-level netlist is input to an Automatic Place and Route tool, which 
creates a layout. The layout is verified and then fabricated on a chip. 
  
 
Thus, most digital design activity is concentrated on manually optimizing the RTL 
description of the circuit. After the RTL description is frozen, EDA tools are available to 
assist the designer in further processes. Designing at the RTL level has shrunk the design 
cycle times from years to a few months. It is also possible to do many design iterations in 
a short period of time. 
  
 
Behavioral synthesis tools have begun to emerge recently. These tools can create RTL 
descriptions from a behavioral or algorithmic description of the circuit. As these tools 
mature, digital circuit design will become similar to high-level computer programming. 
Designers will simply implement the algorithm in an HDL at a very abstract level. EDA 
tools will help the designer convert the behavioral description to a final IC chip. 
  
 
It is important to note that, although EDA tools are available to automate the processes 
and cut design cycle times, the designer is still the person who controls how the tool will 
perform. EDA tools are also susceptible to the "GIGO : Garbage In Garbage Out" 
phenomenon. If used improperly, EDA tools will lead to inefficient designs. Thus, the 
designer still needs to understand the nuances of design methodologies, using EDA tools 
to obtain an optimized design.  
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1.4 Importance of HDLs 
  
 
HDLs have many advantages compared to traditional schematic-based design. 
  

• Designs can be described at a very abstract level by use of HDLs. Designers can 
write their RTL description without choosing a specific fabrication technology. 
Logic synthesis tools can automatically convert the design to any fabrication 
technology. If a new technology emerges, designers do not need to redesign their 
circuit. They simply input the RTL description to the logic synthesis tool and 
create a new gate-level netlist, using the new fabrication technology. The logic 
synthesis tool will optimize the circuit in area and timing for the new technology.

 
• By describing designs in HDLs, functional verification of the design can be done 

early in the design cycle. Since designers work at the RTL level, they can 
optimize and modify the RTL description until it meets the desired functionality. 
Most design bugs are eliminated at this point. This cuts down design cycle time 
significantly because the probability of hitting a functional bug at a later time in 
the gate-level netlist or physical layout is minimized. 

 
• Designing with HDLs is analogous to computer programming. A textual 

description with comments is an easier way to develop and debug circuits. This 
also provides a concise representation of the design, compared to gate-level 
schematics. Gate-level schematics are almost incomprehensible for very complex 
designs. 

 
HDL-based design is here to stay. With rapidly increasing complexities of digital circuits 
and increasingly sophisticated EDA tools, HDLs are now the dominant method for large 
digital designs. No digital circuit designer can afford to ignore HDL-based design. 
 
[3] New tools and languages focused on verification have emerged in the past few years. 
These languages are better suited for functional verification. However, for logic design, 
HDLs continue as the preferred choice. 
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1.5 Popularity of Verilog HDL 
  
 
Verilog HDL has evolved as a standard hardware description language. Verilog HDL 
offers many useful features  
 

• Verilog HDL is a general-purpose hardware description language that is easy to 
learn and easy to use. It is similar in syntax to the C programming language. 
Designers with C programming experience will find it easy to learn Verilog HDL.

 
• Verilog HDL allows different levels of abstraction to be mixed in the same model. 

Thus, a designer can define a hardware model in terms of switches, gates, RTL, or 
behavioral code. Also, a designer needs to learn only one language for stimulus 
and hierarchical design. 

 
• Most popular logic synthesis tools support Verilog HDL. This makes it the 

language of choice for designers. 
 

• All fabrication vendors provide Verilog HDL libraries for postlogic synthesis 
simulation. Thus, designing a chip in Verilog HDL allows the widest choice of 
vendors. 

 
• The Programming Language Interface (PLI) is a powerful feature that allows the 

user to write custom C code to interact with the internal data structures of Verilog. 
Designers can customize a Verilog HDL simulator to their needs with the PLI. 
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1.6 Trends in HDLs 
  
 
The speed and complexity of digital circuits have increased rapidly. Designers have 
responded by designing at higher levels of abstraction. Designers have to think only in 
terms of functionality. EDA tools take care of the implementation details. With designer 
assistance, EDA tools have become sophisticated enough to achieve a close-to-optimum 
implementation. 
  
 
The most popular trend currently is to design in HDL at an RTL level, because logic 
synthesis tools can create gate-level netlists from RTL level design. Behavioral synthesis 
allowed engineers to design directly in terms of algorithms and the behavior of the 
circuit, and then use EDA tools to do the translation and optimization in each phase of the 
design. However, behavioral synthesis did not gain widespread acceptance. Today, RTL 
design continues to be very popular. Verilog HDL is also being constantly enhanced to 
meet the needs of new verification methodologies. 
  
 
Formal verification and assertion checking techniques have emerged. Formal verification 
applies formal mathematical techniques to verify the correctness of Verilog HDL 
descriptions and to establish equivalency between RTL and gate-level netlists. However, 
the need to describe a design in Verilog HDL will not go away. Assertion checkers allow 
checking to be embedded in the RTL code. This is a convenient way to do checking in 
the most important parts of a design. 
  
 
New verification languages have also gained rapid acceptance. These languages combine 
the parallelism and hardware constructs from HDLs with the object oriented nature of 
C++. These languages also provide support for automatic stimulus creation, checking, 
and coverage. However, these languages do not replace Verilog HDL. They simply boost 
the productivity of the verification process. Verilog HDL is still needed to describe the 
design. 
  
 
For very high-speed and timing-critical circuits like microprocessors, the gate-level 
netlist provided by logic synthesis tools is not optimal. In such cases, designers often mix 
gate-level description directly into the RTL description to achieve optimum results. This 
practice is opposite to the high-level design paradigm, yet it is frequently used for high-
speed designs because designers need to squeeze the last bit of timing out of circuits, and 
EDA tools sometimes prove to be insufficient to achieve the desired results. 
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Another technique that is used for system-level design is a mixed bottom-up 
methodology where the designers use either existing Verilog HDL modules, basic 
building blocks, or vendor-supplied core blocks to quickly bring up their system 
simulation. This is done to reduce development costs and compress design schedules. For 
example, consider a system that has a CPU, graphics chip, I/O chip, and a system bus. 
The CPU designers would build the next-generation CPU themselves at an RTL level, but 
they would use behavioral models for the graphics chip and the I/O chip and would buy a 
vendor-supplied model for the system bus. Thus, the system-level simulation for the CPU 
could be up and running very quickly and long before the RTL descriptions for the 
graphics chip and the I/O chip are completed. 
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Chapter 2. Hierarchical Modeling 
Concepts 
  
 
Before we discuss the details of the Verilog language, we must first understand basic 
hierarchical modeling concepts in digital design. The designer must use a "good" design 
methodology to do efficient Verilog HDL-based design. In this chapter, we discuss 
typical design methodologies and illustrate how these concepts are translated to Verilog. 
A digital simulation is made up of various components. We talk about the components 
and their interconnections. 
  
 
Learning Objectives 
  

• Understand top-down and bottom-up design methodologies for digital design. 
 

• Explain differences between modules and module instances in Verilog. 
 

• Describe four levels of abstraction?behavioral, data flow, gate level, and switch 
level?to represent the same module. 

 
• Describe components required for the simulation of a digital design. Define a 

stimulus block and a design block. Explain two methods of applying stimulus. 
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2.1 Design Methodologies 
  
 
There are two basic types of digital design methodologies: a top-down design 
methodology and a bottom-up design methodology. In a top-down design methodology, 
we define the top-level block and identify the sub-blocks necessary to build the top-level 
block. We further subdivide the sub-blocks until we come to leaf cells, which are the 
cells that cannot further be divided. Figure 2-1 shows the top-down design process. 
  

 
Figure 2-1. Top-down Design Methodology 

  

 
 
In a bottom-up design methodology, we first identify the building blocks that are 
available to us. We build bigger cells, using these building blocks. These cells are then 
used for higher-level blocks until we build the top-level block in the design. Figure 2-2 
shows the bottom-up design process. 
  

 
Figure 2-2. Bottom-up Design Methodology 

  

 
 
Typically, a combination of top-down and bottom-up flows is used. Design architects 
define the specifications of the top-level block. Logic designers decide how the design 
should be structured by breaking up the functionality into blocks and sub-blocks. At the 
same time, circuit designers are designing optimized circuits for leaf-level cells. They 
build higher-level cells by using these leaf cells. The flow meets at an intermediate point 
where the switch-level circuit designers have created a library of leaf cells by using 
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switches, and the logic level designers have designed from top-down until all modules are 
defined in terms of leaf cells. 
  
 
To illustrate these hierarchical modeling concepts, let us consider the design of a negative
edge-triggered 4-bit ripple carry counter described in Section 2.2, 4-bit Ripple Carry 
Counter. 
  
 
 
  
 
 
2.2 4-bit Ripple Carry Counter 
  
 
The ripple carry counter shown in Figure 2-3 is made up of negative edge-triggered 
toggle flipflops (T_FF). Each of the T_FFs can be made up from negative edge-triggered 
D-flipflops (D_FF) and inverters (assuming q_bar output is not available on the D_FF), 
as shown in Figure 2-4. 
  

 
Figure 2-3. Ripple Carry Counter 

  

 
 

Figure 2-4. T-flipflop 
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Thus, the ripple carry counter is built in a hierarchical fashion by using building blocks. 
The diagram for the design hierarchy is shown in Figure 2-5. 
  

 
Figure 2-5. Design Hierarchy 

  

 
 
In a top-down design methodology, we first have to specify the functionality of the ripple 
carry counter, which is the top-level block. Then, we implement the counter with T_FFs. 
We build the T_FFs from the D_FF and an additional inverter gate. Thus, we break 
bigger blocks into smaller building sub-blocks until we decide that we cannot break up 
the blocks any further. A bottom-up methodology flows in the opposite direction. We 
combine small building blocks and build bigger blocks; e.g., we could build D_FF from 
and and or gates, or we could build a custom D_FF from transistors. Thus, the bottom-up 
flow meets the top-down flow at the level of the D_FF. 
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2.3 Modules 
  
 
We now relate these hierarchical modeling concepts to Verilog. Verilog provides the 
concept of a module. A module is the basic building block in Verilog. A module can be 
an element or a collection of lower-level design blocks. Typically, elements are grouped 
into modules to provide common functionality that is used at many places in the design. 
A module provides the necessary functionality to the higher-level block through its port 
interface (inputs and outputs), but hides the internal implementation. This allows the 
designer to modify module internals without affecting the rest of the design. 
  
 
In Figure 2-5, ripple carry counter, T_FF, D_FF are examples of modules. In Verilog, a 
module is declared by the keyword module. A corresponding keyword endmodule must 
appear at the end of the module definition. Each module must have a module_name, 
which is the identifier for the module, and a module_terminal_list, which describes the 
input and output terminals of the module. 
  
module <module_name> (<module_terminal_list>); 
 
... 
<module internals> 
... 
... 
endmodule 
  
 
Specifically, the T-flipflop could be defined as a module as follows: 
  
module T_FF (q, clock, reset); 
. 
. 
<functionality of T-flipflop> 
. 
. 
endmodule 
  
 
Verilog is both a behavioral and a structural language. Internals of each module can be 
defined at four levels of abstraction, depending on the needs of the design. The module 
behaves identically with the external environment irrespective of the level of abstraction 
at which the module is described. The internals of the module are hidden from the 
environment. Thus, the level of abstraction to describe a module can be changed without 
any change in the environment. These levels will be studied in detail in separate chapters 
later in the book. The levels are defined below. 
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• Behavioral or algorithmic level 
 

• This is the highest level of abstraction provided by Verilog HDL. A module can 
be implemented in terms of the desired design algorithm without concern for the 
hardware implementation details. Designing at this level is very similar to C 
programming. 

 
• Dataflow level 

 
• At this level, the module is designed by specifying the data flow. The designer is 

aware of how data flows between hardware registers and how the data is 
processed in the design. 

 
• Gate level 

 
• The module is implemented in terms of logic gates and interconnections between 

these gates. Design at this level is similar to describing a design in terms of a 
gate-level logic diagram. 

 
• Switch level 

 
• This is the lowest level of abstraction provided by Verilog. A module can be 

implemented in terms of switches, storage nodes, and the interconnections 
between them. Design at this level requires knowledge of switch-level 
implementation details. 

  
 
Verilog allows the designer to mix and match all four levels of abstractions in a design. 
In the digital design community, the term register transfer level (RTL) is frequently used 
for a Verilog description that uses a combination of behavioral and dataflow constructs 
and is acceptable to logic synthesis tools. 
  
 
If a design contains four modules, Verilog allows each of the modules to be written at a 
different level of abstraction. As the design matures, most modules are replaced with 
gate-level implementations. 
  
 
Normally, the higher the level of abstraction, the more flexible and technology-
independent the design. As one goes lower toward switch-level design, the design 
becomes technology-dependent and inflexible. A small modification can cause a 
significant number of changes in the design. Consider the analogy with C programming 
and assembly language programming. It is easier to program in a higher-level language 
such as C. The program can be easily ported to any machine. However, if you design at 
the assembly level, the program is specific for that machine and cannot be easily ported 
to another machine. 
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2.4 Instances 
  
 
A module provides a template from which you can create actual objects. When a module 
is invoked, Verilog creates a unique object from the template. Each object has its own 
name, variables, parameters, and I/O interface. The process of creating objects from a 
module template is called instantiation, and the objects are called instances. In Example 
2-1, the top-level block creates four instances from the T-flipflop (T_FF) template. Each 
T_FF instantiates a D_FF and an inverter gate. Each instance must be given a unique 
name. Note that // is used to denote single-line comments. 
  
Example 2-1 Module Instantiation 
  
// Define the top-level module called ripple carry 
// counter. It instantiates 4 T-flipflops. Interconnections are 
// shown in Section 2.2, 4-bit Ripple Carry Counter. 
module ripple_carry_counter(q, clk, reset); 
 
output [3:0] q; //I/O signals and vector declarations 
              //will be explained later. 
input clk, reset; //I/O signals will be explained later. 
 
//Four instances of the module T_FF are created. Each has a unique 
//name.Each instance is passed a set of signals. Notice, that 
//each instance is a copy of the module T_FF. 
T_FF tff0(q[0],clk, reset); 
T_FF tff1(q[1],q[0], reset); 
T_FF tff2(q[2],q[1], reset); 
T_FF tff3(q[3],q[2], reset); 
 
endmodule 
 
// Define the module T_FF. It instantiates a D-flipflop. We assumed 
// that module D-flipflop is defined elsewhere in the design. Refer 
// to Figure 2-4 for interconnections. 
module T_FF(q, clk, reset); 
 
//Declarations to be explained later 
output q; 
input clk, reset; 
wire d; 
 
D_FF dff0(q, d, clk, reset); // Instantiate D_FF. Call it dff0. 
not n1(d, q); // not gate is a Verilog primitive. Explained later. 
 
endmodule 
  
 
In Verilog, it is illegal to nest modules. One module definition cannot contain another 
module definition within the module and endmodule statements. Instead, a module 
definition can incorporate copies of other modules by instantiating them. It is important 
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not to confuse module definitions and instances of a module. Module definitions simply 
specify how the module will work, its internals, and its interface. Modules must be 
instantiated for use in the design. 
  
 
Example 2-2 shows an illegal module nesting where the module T_FF is defined inside 
the module definition of the ripple carry counter. 
  
Example 2-2 Illegal Module Nesting 
  
// Define the top-level module called ripple carry counter. 
// It is illegal to define the module T_FF inside this module. 
module ripple_carry_counter(q, clk, reset); 
output [3:0] q; 
input clk, reset; 
 
   module T_FF(q, clock, reset);// ILLEGAL MODULE NESTING 
   ... 
   <module T_FF internals> 
   ... 
   endmodule // END OF ILLEGAL MODULE NESTING 
 
endmodule 

  
 
 
 
 
2.5 Components of a Simulation 
  
 
Once a design block is completed, it must be tested. The functionality of the design block 
can be tested by applying stimulus and checking results. We call such a block the 
stimulus block. It is good practice to keep the stimulus and design blocks separate. The 
stimulus block can be written in Verilog. A separate language is not required to describe 
stimulus. The stimulus block is also commonly called a test bench. Different test benches 
can be used to thoroughly test the design block. 
  
 
Two styles of stimulus application are possible. In the first style, the stimulus block 
instantiates the design block and directly drives the signals in the design block. In Figure 
2-6, the stimulus block becomes the top-level block. It manipulates signals clk and reset, 
and it checks and displays output signal q. 
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Figure 2-6. Stimulus Block Instantiates Design Block 
  

 
 
The second style of applying stimulus is to instantiate both the stimulus and design 
blocks in a top-level dummy module. The stimulus block interacts with the design block 
only through the interface. This style of applying stimulus is shown in Figure 2-7. The 
stimulus module drives the signals d_clk and d_reset, which are connected to the signals 
clk and reset in the design block. It also checks and displays signal c_q, which is 
connected to the signal q in the design block. The function of top-level block is simply to 
instantiate the design and stimulus blocks. 
  
Figure 2-7. Stimulus and Design Blocks Instantiated in a Dummy Top-Level Module

  

 
 
Either stimulus style can be used effectively.  
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 2.6 Example 
  
 
To illustrate the concepts discussed in the previous sections, let us build the complete 
simulation of a ripple carry counter. We will define the design block and the stimulus 
block. We will apply stimulus to the design block and monitor the outputs. As we 
develop the Verilog models, you do not need to understand the exact syntax of each 
construct at this stage. At this point, you should simply try to understand the design 
process. We discuss the syntax in much greater detail in the later chapters. 
  
2.6.1 Design Block 
  
 
We use a top-down design methodology. First, we write the Verilog description of the 
top-level design block (Example 2-3), which is the ripple carry counter (see Section 2.2, 
4-bit Ripple Carry Counter). 
  
Example 2-3 Ripple Carry Counter Top Block 
  
module ripple_carry_counter(q, clk, reset); 
 
output [3:0] q; 
input clk, reset; 
 
//4 instances of the module T_FF are created. 
T_FF tff0(q[0],clk, reset); 
T_FF tff1(q[1],q[0], reset); 
T_FF tff2(q[2],q[1], reset); 
T_FF tff3(q[3],q[2], reset); 
 
endmodule 
  
 
In the above module, four instances of the module T_FF (T-flipflop) are used. Therefore, 
we must now define (Example 2-4) the internals of the module T_FF, which was shown 
in Figure 2-4. 
  
Example 2-4 Flipflop T_FF 
  
module T_FF(q, clk, reset); 
 
output q; 
input clk, reset; 
wire d; 
D_FF dff0(q, d, clk, reset); 
not n1(d, q); // not is a Verilog-provided primitive. case sensitive 
endmodule 
  
 
Since T_FF instantiates D_FF, we must now define (Example 2-5) the internals of 
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module D_FF. We assume asynchronous reset for the D_FFF. 
  
Example 2-5 Flipflop D_F 
  
// module D_FF with synchronous reset 
module D_FF(q, d, clk, reset); 
 
output q; 
input d, clk, reset; 
reg q; 
 
// Lots of new constructs.  Ignore the functionality of the 
// constructs. 
// Concentrate on how the design block is built in a top-down fashion. 
always @(posedge reset or negedge clk) 
if (reset) 
    q <= 1'b0; 
else 
    q <= d; 
 
endmodule 
  
 
All modules have been defined down to the lowest-level leaf cells in the design 
methodology. The design block is now complete. 
  
2.6.2 Stimulus Block 
  
 
We must now write the stimulus block to check if the ripple carry counter design is 
functioning correctly. In this case, we must control the signals clk and reset so that the 
regular function of the ripple carry counter and the asynchronous reset mechanism are 
both tested. We use the waveforms shown in Figure 2-8 to test the design. Waveforms for 
clk, reset, and 4-bit output q are shown. The cycle time for clk is 10 units; the reset signal 
stays up from time 0 to 15 and then goes up again from time 195 to 205. Output q counts 
from 0 to 15. 
  

Figure 2-8. Stimulus and Output Waveforms 
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We are now ready to write the stimulus block (see Example 2-6) that will create the 
above waveforms. We will use the stimulus style shown in Figure 2-6. Do not worry 
about the Verilog syntax at this point. Simply concentrate on how the design block is 
instantiated in the stimulus block. 
  
Example 2-6 Stimulus Block 
  
module stimulus; 
 
reg clk; 
reg reset; 
wire[3:0] q; 
 
// instantiate the design block 
ripple_carry_counter r1(q, clk, reset); 
 
// Control the clk signal that drives the design block. Cycle time = 10
initial 
   clk = 1'b0; //set clk to 0 
always 
   #5 clk = ~clk; //toggle clk every 5 time units 
 
// Control the reset signal that drives the design block 
// reset is asserted from 0 to 20 and from 200 to 220. 
initial 
begin 
   reset = 1'b1; 
   #15 reset = 1'b0; 
   #180 reset = 1'b1; 
   #10 reset = 1'b0; 
   #20 $finish; //terminate the simulation 
end 
 
// Monitor the outputs 
initial 
   $monitor($time, " Output q = %d",  q); 
 
endmodule 
  
 
Once the stimulus block is completed, we are ready to run the simulation and verify the 
functional correctness of the design block. The output obtained when stimulus and design 
blocks are simulated is shown in Example 2-7. 
  
Example 2-7 Output of the Simulation 
  
  0 Output q =  0 
 20 Output q =  1 
 30 Output q =  2 
 40 Output q =  3 
 50 Output q =  4 
 60 Output q =  5 
 70 Output q =  6 
 80 Output q =  7 
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 90 Output q =  8 
100 Output q =  9 
110 Output q = 10 
120 Output q = 11 
130 Output q = 12 
140 Output q = 13 
150 Output q = 14 
160 Output q = 15 
170 Output q =  0 
180 Output q =  1 
190 Output q =  2 
195 Output q =  0 
210 Output q =  1 
220 Output q =  2 
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2.7 Summary 
  
 
In this chapter we discussed the following concepts. 
  
 

• Two kinds of design methodologies are used for digital design: top-down and 
bottom-up. A combination of these two methodologies is used in today's digital 
designs. As designs become very complex, it is important to follow these 
structured approaches to manage the design process. 

 
• Modules are the basic building blocks in Verilog. Modules are used in a design by 

instantiation. An instance of a module has a unique identity and is different from 
other instances of the same module. Each instance has an independent copy of the 
internals of the module. It is important to understand the difference between 
modules and instances. 

 
• There are two distinct components in a simulation: a design block and a stimulus 

block. A stimulus block is used to test the design block. The stimulus block is 
usually the top-level block. There are two different styles of applying stimulus to 
a design block. 

 
• The example of the ripple carry counter explains the step-by-step process of 

building all the blocks required in a simulation. 
  
 
This chapter is intended to give an understanding of the design process and how Verilog 
fits into the design process. The details of Verilog syntax are not important at this stage 
and will be dealt with in later chapters. 
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2.8 Exercises 
  
 

1: An interconnect switch (IS) contains the following components, a shared 
memory (MEM), a system controller (SC) and a data crossbar (Xbar). 
  

a. Define the modules MEM, SC, and Xbar, using the module/endmodule 
keywords. You do not need to define the internals. Assume that the 
modules have no terminal lists. 

 
b. Define the module IS, using the module/endmodule keywords. 

Instantiate the modules MEM, SC, Xbar and call the instances mem1, 
sc1, and xbar1, respectively. You do not need to define the internals. 
Assume that the module IS has no terminals. 

 
c. Define a stimulus block (Top), using the module/endmodule keywords. 

Instantiate the design block IS and call the instance is1. This is the final 
step in building the simulation environment. 

2: A 4-bit ripple carry adder (Ripple_Add) contains four 1-bit full adders (FA). 
  

a. Define the module FA. Do not define the internals or the terminal list. 
 

b. Define the module Ripple_Add. Do not define the internals or the 
terminal list. Instantiate four full adders of the type FA in the module 
Ripple_Add and call them fa0, fa1, fa2, and fa3. 
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Chapter 3. Basic Concepts 
  
 
In this chapter, we discuss the basic constructs and conventions in Verilog. These 
conventions and constructs are used throughout the later chapters. These conventions 
provide the necessary framework for Verilog HDL. Data types in Verilog model actual 
data storage and switch elements in hardware very closely. This chapter may seem dry, 
but understanding these concepts is a necessary foundation for the successive chapters. 
  
 
Learning Objectives 
  
 

• Understand lexical conventions for operators, comments, whitespace, numbers, 
strings, and identifiers. 

 
• Define the logic value set and data types such as nets, registers, vectors, numbers, 

simulation time, arrays, parameters, memories, and strings. 
 

• Identify useful system tasks for displaying and monitoring information, and for 
stopping and finishing the simulation. 

 
• Learn basic compiler directives to define macros and include files. 

  
 
 
  
 
 
3.1 Lexical Conventions 
  
 
The basic lexical conventions used by Verilog HDL are similar to those in the C 
programming language. Verilog contains a stream of tokens. Tokens can be comments, 
delimiters, numbers, strings, identifiers, and keywords. Verilog HDL is a case-sensitive 
language. All keywords are in lowercase. 
  
3.1.1 Whitespace 
  
 
Blank spaces (\b) , tabs (\t) and newlines (\n) comprise the whitespace. Whitespace is 
ignored by Verilog except when it separates tokens. Whitespace is not ignored in strings.
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3.1.2 Comments 
  
 
Comments can be inserted in the code for readability and documentation. There are two 
ways to write comments. A one-line comment starts with "//". Verilog skips from that 
point to the end of line. A multiple-line comment starts with "/*" and ends with "*/". 
Multiple-line comments cannot be nested. However, one-line comments can be 
embedded in multiple-line comments. 
  
a = b && c; // This is a one-line comment 
 
/* This is a multiple line 
    comment */ 
 
/* This is /* an illegal */ comment */ 
 
/* This is //a legal comment */ 
  
3.1.3 Operators 
  
 
Operators are of three types: unary, binary, and ternary. Unary operators precede the 
operand. Binary operators appear between two operands. Ternary operators have two 
separate operators that separate three operands. 
  
a = ~ b; // ~ is a unary operator. b is the operand 
a = b && c; // && is a binary operator. b and c are operands 
a = b ? c : d; // ?: is a ternary operator. b, c and d are operands 
  
3.1.4 Number Specification 
  
 
There are two types of number specification in Verilog: sized and unsized. 
  
Sized numbers 
  
 
Sized numbers are represented as <size> '<base format> <number>. 
  
 
<size> is written only in decimal and specifies the number of bits in the number. Legal 
base formats are decimal ('d or 'D), hexadecimal ('h or 'H), binary ('b or 'B) and octal ('o 
or 'O). The number is specified as consecutive digits from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, 
c, d, e, f. Only a subset of these digits is legal for a particular base. Uppercase letters are 
legal for number specification. 
  
4'b1111 // This is a 4-bit   binary number 
12'habc // This is a 12-bit  hexadecimal number 
16'd255 // This is a 16-bit  decimal number. 
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Unsized numbers 
  
 
Numbers that are specified without a <base format> specification are decimal numbers 
by default. Numbers that are written without a <size> specification have a default number 
of bits that is simulator- and machine-specific (must be at least 32). 
  
23456 // This is a 32-bit   decimal number by default 
'hc3 // This is a 32-bit   hexadecimal number 
'o21 // This is a 32-bit   octal number 
  
X or Z values 
  
 
Verilog has two symbols for unknown and high impedance values. These values are very 
important for modeling real circuits. An unknown value is denoted by an x. A high 
impedance value is denoted by z. 
  
12'h13x // This is a 12-bit hex number; 4 least significant bits 
unknown 
6'hx // This is a 6-bit hex number 
32'bz // This is a 32-bit high impedance number 
  
 
An x or z sets four bits for a number in the hexadecimal base, three bits for a number in 
the octal base, and one bit for a number in the binary base. If the most significant bit of a 
number is 0, x, or z, the number is automatically extended to fill the most significant bits, 
respectively, with 0, x, or z. This makes it easy to assign x or z to whole vector. If the 
most significant digit is 1, then it is also zero extended. 
  
Negative numbers 
  
 
Negative numbers can be specified by putting a minus sign before the size for a constant 
number. Size constants are always positive. It is illegal to have a minus sign between 
<base format> and <number>. An optional signed specifier can be added for signed 
arithmetic. 
  
-6'd3 // 8-bit   negative number stored as 2's complement of 3 
-6'sd3 // Used for performing signed integer math 
4'd-2 // Illegal specification 
  
Underscore characters and question marks 
  
An underscore character "_" is allowed anywhere in a number except the first character. 
Underscore characters are allowed only to improve readability of numbers and are 
ignored by Verilog. 
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A question mark "?" is the Verilog HDL alternative for z in the context of numbers. The ? 
is used to enhance readability in the casex and casez statements discussed in Chapter 7, 
where the high impedance value is a don't care condition. (Note that ? has a different 
meaning in the context of user-defined primitives, which are discussed in Chapter 12, 
User-Defined Primitives.) 
  
12'b1111_0000_1010 // Use of underline characters for readability 
4'b10?? // Equivalent of a 4'b10zz 
  
3.1.5 Strings 
  
 
A string is a sequence of characters that are enclosed by double quotes. The restriction on 
a string is that it must be contained on a single line, that is, without a carriage return. It 
cannot be on multiple lines. Strings are treated as a sequence of one-byte ASCII values. 
  
"Hello Verilog World" // is a string 
"a / b" // is a string 
  
3.1.6 Identifiers and Keywords 
  
 
Keywords are special identifiers reserved to define the language constructs. Keywords 
are in lowercase. A list of all keywords in Verilog is contained in Appendix C, List of 
Keywords, System Tasks, and Compiler Directives. 
  
 
Identifiers are names given to objects so that they can be referenced in the design. 
Identifiers are made up of alphanumeric characters, the underscore ( _ ), or the dollar sign 
( $ ). Identifiers are case sensitive. Identifiers start with an alphabetic character or an 
underscore. They cannot start with a digit or a $ sign (The $ sign as the first character is 
reserved for system tasks, which are explained later in the book). 
  
reg value; // reg is a keyword; value is an identifier 
input clk; // input is a keyword, clk is an identifier 
  
3.1.7 Escaped Identifiers 
  
 
Escaped identifiers begin with the backslash ( \ ) character and end with whitespace 
(space, tab, or newline). All characters between backslash and whitespace are processed 
literally. Any printable ASCII character can be included in escaped identifiers. Neither 
the backslash nor the terminating whitespace is considered to be a part of the identifier. 
  
\a+b-c 
\**my_name** 
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3.2 Data Types 
  
 
This section discusses the data types used in Verilog. 
  
3.2.1 Value Set 
  
 
Verilog supports four values and eight strengths to model the functionality of real 
hardware. The four value levels are listed in Table 3-1. 
  
 
Table 3-1. Value Levels 
 
Value Level Condition in Hardware Circuits 

0 Logic zero, false condition 

1 Logic one, true condition 

x Unknown logic value 

z High impedance, floating state 
 
In addition to logic values, strength levels are often used to resolve conflicts between 
drivers of different strengths in digital circuits. Value levels 0 and 1 can have the strength 
levels listed in Table 3-2. 
  
 
Table 3-2. Strength Levels 
 

Strength Level Type Degree 

supply Driving strongest 

strong Driving 

pull riving 

large Storage 

weak Driving 

medium Storage 

small Storage 

 

highz High Impedance weakest 
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If two signals of unequal strengths are driven on a wire, the stronger signal prevails. For 
example, if two signals of strength strong1 and weak0 contend, the result is resolved as a 
strong1. If two signals of equal strengths are driven on a wire, the result is unknown. If 
two signals of strength strong1 and strong0 conflict, the result is an x. Strength levels are 
particularly useful for accurate modeling of signal contention, MOS devices, dynamic 
MOS, and other low-level devices. Only trireg nets can have storage strengths large, 
medium, and small. Detailed information about strength modeling is provided in 
Appendix A, Strength Modeling and Advanced Net Definitions. 
  
3.2.2 Nets 
  
 
Nets represent connections between hardware elements. Just as in real circuits, nets have 
values continuously driven on them by the outputs of devices that they are connected to. 
In Figure 3-1 net a is connected to the output of and gate g1. Net a will continuously 
assume the value computed at the output of gate g1, which is b & c. 
  

 
Figure 3-1. Example of Nets 

  

 
 
Nets are declared primarily with the keyword wire. Nets are one-bit values by default 
unless they are declared explicitly as vectors. The terms wire and net are often used 
interchangeably. The default value of a net is z (except the trireg net, which defaults to x 
). Nets get the output value of their drivers. If a net has no driver, it gets the value z. 
  
wire a; // Declare net a for the above circuit 
wire b,c; // Declare two wires b,c for the above circuit 
wire d = 1'b0; // Net d is fixed to logic value 0 at declaration. 
  
 
Note that net is not a keyword but represents a class of data types such as wire, wand, 
wor, tri, triand, trior, trireg, etc. The wire declaration is used most frequently. Other net 
declarations are discussed in Appendix A, Strength Modeling and Advanced Net 
Definitions. 
  
3.2.3 Registers 
  
 
Registers represent data storage elements. Registers retain value until another value is 
placed onto them. Do not confuse the term registers in Verilog with hardware registers 
built from edge-triggered flipflops in real circuits. In Verilog, the term register merely 
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means a variable that can hold a value. Unlike a net, a register does not need a driver. 
Verilog registers do not need a clock as hardware registers do. Values of registers can be 
changed anytime in a simulation by assigning a new value to the register. 
  
 
Register data types are commonly declared by the keyword reg. The default value for a 
reg data type is x. An example of how registers are used is shown Example 3-1. 
  
Example 3-1 Example of Register 
  
reg reset; // declare a variable reset that can hold its value 
initial // this construct will be discussed later 
begin 
  reset = 1'b1; //initialize reset to 1 to reset the digital circuit. 
  #100 reset = 1'b0; // after 100 time units reset is deasserted. 
end 
  
 
Registers can also be declared as signed variables. Such registers can be used for signed 
arithmetic. Example 3-2 shows the declaration of a signed register. 
  
Example 3-2 Signed Register Declaration 
  
reg signed [63:0] m; // 64 bit signed value 
integer i; // 32 bit signed value 
  
3.2.4 Vectors 
  
 
Nets or reg data types can be declared as vectors (multiple bit widths). If bit width is not 
specified, the default is scalar (1-bit). 
  
wire a; // scalar net variable, default 
wire [7:0] bus; // 8-bit   bus 
wire [31:0] busA,busB,busC; // 3 buses of 32-bit width. 
reg clock; // scalar register, default 
reg [0:40] virtual_addr; // Vector register, virtual address 41 bits 
wide 
  
 
Vectors can be declared at [high# : low#] or [low# : high#], but the left number in the 
squared brackets is always the most significant bit of the vector. In the example shown 
above, bit 0 is the most significant bit of vector virtual_addr. 
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Vector Part Select 
  
 
For the vector declarations shown above, it is possible to address bits or parts of vectors. 
  
busA[7] // bit # 7 of vector busA 
bus[2:0] // Three least significant bits of vector bus, 
 // using bus[0:2] is illegal because the significant bit should 
 // always be on the left of a range specification 
virtual_addr[0:1] // Two most significant bits of vector virtual_addr 
  
Variable Vector Part Select 
  
 
Another ability provided in Verilog HDl is to have variable part selects of a vector. This 
allows part selects to be put in for loops to select various parts of the vector. There are 
two special part-select operators: 
  
 
[<starting_bit>+:width] - part-select increments from starting bit 
  
 
[<starting_bit>-:width] - part-select decrements from starting bit 
  
 
The starting bit of the part select can be varied, but the width has to be constant. The 
following example shows the use of variable vector part select: 
  
reg [255:0] data1; //Little endian notation 
reg [0:255] data2; //Big endian notation 
reg [7:0] byte; 
 
//Using a variable part select, one can choose parts 
byte = data1[31-:8]; //starting bit = 31, width =8 => data[31:24] 
byte = data1[24+:8]; //starting bit = 24, width =8 => data[31:24] 
byte = data2[31-:8]; //starting bit = 31, width =8 => data[24:31] 
byte = data2[24+:8]; //starting bit = 24, width =8 => data[24:31] 
 
//The starting bit can also be a variable. The width has 
//to be constant. Therefore, one can use the variable part select 
//in a loop to select all bytes of the vector. 
for (j=0; j<=31; j=j+1) 
    byte = data1[(j*8)+:8]; //Sequence is [7:0], [15:8]... [255:248] 
 
//Can initialize a part of the vector 
data1[(byteNum*8)+:8] = 8'b0; //If byteNum = 1, clear 8 bits [15:8] 
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3.2.5 Integer , Real, and Time Register Data Types 
  
 
Integer, real, and time register data types are supported in Verilog. 
  
Integer 
  
 
An integer is a general purpose register data type used for manipulating quantities. 
Integers are declared by the keyword integer. Although it is possible to use reg as a 
general-purpose variable, it is more convenient to declare an integer variable for purposes 
such as counting. The default width for an integer is the host-machine word size, which is 
implementation-specific but is at least 32 bits. Registers declared as data type reg store 
values as unsigned quantities, whereas integers store values as signed quantities. 
  
integer counter; // general purpose variable used as a counter. 
initial 
    counter = -1; // A negative one is stored in the counter 
  
Real 
  
 
Real number constants and real register data types are declared with the keyword real. 
They can be specified in decimal notation (e.g., 3.14) or in scientific notation (e.g., 3e6, 
which is 3 x 106 ). Real numbers cannot have a range declaration, and their default value 
is 0. When a real value is assigned to an integer, the real number is rounded off to the 
nearest integer. 
  
real delta; // Define a real variable called delta 
initial 
begin 
    delta = 4e10; // delta is assigned in scientific notation 
    delta = 2.13; // delta is assigned a value 2.13 
end 
integer i; // Define an integer i 
initial 
    i = delta; // i gets the value 2 (rounded value of 2.13) 
  
Time 
  
 
Verilog simulation is done with respect to simulation time. A special time register data 
type is used in Verilog to store simulation time. A time variable is declared with the 
keyword time. The width for time register data types is implementation-specific but is at 
least 64 bits.The system function $time is invoked to get the current simulation time. 
  
time save_sim_time; // Define a time variable save_sim_time 
initial 
    save_sim_time = $time; // Save the current simulation time 
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Simulation time is measured in terms of simulation seconds. The unit is denoted by s, the 
same as real time. However, the relationship between real time in the digital circuit and 
simulation time is left to the user. This is discussed in detail in Section 9.4, Time Scales. 
  
3.2.6 Arrays 
  
 
Arrays are allowed in Verilog for reg, integer, time, real, realtime and vector register data 
types. Multi-dimensional arrays can also be declared with any number of dimensions. 
Arrays of nets can also be used to connect ports of generated instances. Each element of 
the array can be used in the same fashion as a scalar or vector net. Arrays are accessed by 
<array_name>[<subscript>]. For multi-dimensional arrays, indexes need to be provided 
for each dimension. 
  
integer count[0:7]; // An array of 8 count variables 
 
reg bool[31:0]; // Array of 32 one-bit boolean register variables 
 
time chk_point[1:100]; // Array of 100 time checkpoint variables 
 
reg [4:0] port_id[0:7]; // Array of 8 port_ids; each port_id is 5 bits 
wide 
 
integer matrix[4:0][0:255]; // Two dimensional array of integers 
 
reg [63:0] array_4d [15:0][7:0][7:0][255:0]; //Four dimensional array 
 
wire [7:0] w_array2 [5:0]; // Declare an array of 8 bit vector wire 
 
wire w_array1[7:0][5:0]; // Declare an array of single bit wires 
  
 
It is important not to confuse arrays with net or register vectors. A vector is a single 
element that is n-bits wide. On the other hand, arrays are multiple elements that are 1-bit 
or n-bits wide. 
  
 
Examples of assignments to elements of arrays discussed above are shown below: 
  
count[5] = 0; // Reset 5th element of array of count variables 
chk_point[100] = 0; // Reset 100th time check point value 
port_id[3] = 0; // Reset 3rd element (a 5-bit value) of port_id array. 
 
matrix[1][0] = 33559; // Set value of element indexed by [1][0] to 
33559 
array_4d[0][0][0][0][15:0] = 0; //Clear bits 15:0 of the register 
                                //accessed by indices [0][0][0][0] 
 
port_id = 0; // Illegal syntax - Attempt to write the entire array 
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matrix [1] = 0; // Illegal syntax - Attempt to write [1][0]..[1][255] 
  
3.2.7 Memories 
  
 
In digital simulation, one often needs to model register files, RAMs, and ROMs. 
Memories are modeled in Verilog simply as a one-dimensional array of registers. Each 
element of the array is known as an element or word and is addressed by a single array 
index. Each word can be one or more bits. It is important to differentiate between n 1-bit 
registers and one n-bit register. A particular word in memory is obtained by using the 
address as a memory array subscript. 
  
reg mem1bit[0:1023]; // Memory mem1bit with 1K 1-bit words 
reg [7:0] membyte[0:1023]; // Memory membyte with 1K 8-bit words(bytes)
membyte[511] // Fetches 1 byte word whose address is 511. 
  
3.2.8 Parameters 
  
 
Verilog allows constants to be defined in a module by the keyword parameter. Parameters 
cannot be used as variables. Parameter values for each module instance can be overridden 
individually at compile time. This allows the module instances to be customized. This 
aspect is discussed later. Parameter types and sizes can also be defined. 
  
parameter port_id = 5; // Defines a constant port_id 
parameter cache_line_width = 256; // Constant defines width of cache 
line 
parameter signed [15:0] WIDTH; // Fixed sign and range for parameter 
                               // WIDTH 
  
 
Module definitions may be written in terms of parameters. Hardcoded numbers should be 
avoided. Parameters values can be changed at module instantiation or by using the 
defparam statement, which is discussed in detail in Chapter 9, Useful Modeling 
Techniques. Thus, the use of parameters makes the module definition flexible. Module 
behavior can be altered simply by changing the value of a parameter. 
  
 
Verilog HDL local parameters (defined using keyword localparam -) are identical to 
parameters except that they cannot be directly modified with the defparam statement or 
by the ordered or named parameter value assignment. The localparam keyword is used to 
define parameters when their values should not be changed. For example, the state 
encoding for a state machine can be defined using localparam. The state encoding cannot 
be changed. This provides protection against inadvertent parameter redefinition. 
  
localparam state1 = 4'b0001, 
           state2 = 4'b0010, 
           state3 = 4'b0100, 
           state4 = 4'b1000; 
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3.2.9 Strings 
  
 
Strings can be stored in reg. The width of the register variables must be large enough to 
hold the string. Each character in the string takes up 8 bits (1 byte). If the width of the 
register is greater than the size of the string, Verilog fills bits to the left of the string with 
zeros. If the register width is smaller than the string width, Verilog truncates the leftmost 
bits of the string. It is always safe to declare a string that is slightly wider than necessary.
  
reg [8*18:1] string_value; // Declare a variable that is 18 bytes wide 
initial 
   string_value = "Hello Verilog World"; // String can be stored 
                                         // in variable 
  
 
Special characters serve a special purpose in displaying strings, such as newline, tabs, and 
displaying argument values. Special characters can be displayed in strings only when 
they are preceded by escape characters, as shown in Table 3-3. 
  
 
Table 3-3. Special Characters 
 

Escaped Characters Character Displayed 

\n newline 

\t tab 

%% % 

\\ \ 

\" " 

\ooo Character written in 1?3 octal digits 
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3.3 System Tasks and Compiler Directives 
  
 
In this section, we introduce two special concepts used in Verilog: system tasks and 
compiler directives. 
  
3.3.1 System Tasks 
  
 
Verilog provides standard system tasks for certain routine operations. All system tasks 
appear in the form $<keyword>. Operations such as displaying on the screen, monitoring 
values of nets, stopping, and finishing are done by system tasks. We will discuss only the 
most useful system tasks. Other tasks are listed in Verilog manuals provided by your 
simulator vendor or in the IEEE Standard Verilog Hardware Description Language 
specification. 
  
Displaying information 
  
 
$display is the main system task for displaying values of variables or strings or 
expressions. This is one of the most useful tasks in Verilog. 
  
 
Usage: $display(p1, p2, p3,....., pn); 
  
 
p1, p2, p3,..., pn can be quoted strings or variables or expressions. The format of $display 
is very similar to printf in C. A $display inserts a newline at the end of the string by 
default. A $display without any arguments produces a newline. 
  
 
Strings can be formatted using the specifications listed in Table 3-4. For more detailed 
specifications, see IEEE Standard Verilog Hardware Description Language specification.
  
 
Table 3-4. String Format Specifications 
 

Format Display 

%d or %D Display variable in decimal 

%b or %B Display variable in binary 

%s or %S Display string 

%h or %H Display variable in hex 
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%c or %C Display ASCII character 

%m or %M Display hierarchical name (no argument required) 

%v or %V Display strength 

%o or %O Display variable in octal 

%t or %T Display in current time format 

%e or %E Display real number in scientific format (e.g., 3e10) 

%f or %F Display real number in decimal format (e.g., 2.13) 

%g or %G Display real number in scientific or decimal, whichever is shorter 
 
Example 3-3 shows some examples of the $display task. If variables contain x or z 
values, they are printed in the displayed string as "x" or "z". 
  
Example 3-3 $display Task 
  
//Display the string in quotes 
$display("Hello Verilog World"); 
-- Hello Verilog World 
 
//Display value of current simulation time 230 
$display($time); 
-- 230 
 
//Display value of 41-bit virtual address 1fe0000001c at time 200 
reg [0:40] virtual_addr; 
$display("At time %d virtual address is %h", $time, virtual_addr); 
-- At time 200 virtual address is 1fe0000001c 
 
//Display value of port_id 5 in binary 
reg [4:0] port_id; 
$display("ID of the port is %b", port_id); 
-- ID of the port is 00101 
 
//Display x characters 
//Display value of 4-bit bus 10xx (signal contention) in binary 
reg [3:0] bus; 
$display("Bus value is %b", bus); 
-- Bus value is 10xx 
 
//Display the hierarchical name of instance p1 instantiated under 
//the highest-level module called top. No argument is required. This 
//is a useful feature) 
$display("This string is displayed from %m level of hierarchy"); 
-- This string is displayed from top.p1 level of hierarchy 
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Special characters are discussed in Section 3.2.9, Strings. Examples of displaying special 
characters in strings as discussed are shown in Example 3-4. 
  
Example 3-4 Special Characters 
  
//Display special characters, newline and % 
$display("This is a \n multiline string with a %% sign"); 
-- This is a 
-- multiline string with a % sign 
 
//Display other special characters 
  
Monitoring information 
  
 
Verilog provides a mechanism to monitor a signal when its value changes. This facility is 
provided by the $monitor task. 
  
 
Usage: $monitor(p1,p2,p3,....,pn); 
  
 
The parameters p1, p2, ... , pn can be variables, signal names, or quoted strings. A format 
similar to the $display task is used in the $monitor task. $monitor continuously monitors 
the values of the variables or signals specified in the parameter list and displays all 
parameters in the list whenever the value of any one variable or signal changes. Unlike 
$display, $monitor needs to be invoked only once. 
  
 
Only one monitoring list can be active at a time. If there is more than one $monitor 
statement in your simulation, the last $monitor statement will be the active statement. 
The earlier $monitor statements will be overridden. 
  
 
Two tasks are used to switch monitoring on and off. 
  
Usage:  
 
$monitoron; 
$monitoroff; 
  
 
The $monitoron tasks enables monitoring, and the $monitoroff task disables monitoring 
during a simulation. Monitoring is turned on by default at the beginning of the simulation 
and can be controlled during the simulation with the $monitoron and $monitoroff tasks. 
Examples of monitoring statements are given in Example 3-5. Note the use of $time in 
the $monitor statement. 
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Example 3-5 Monitor Statement 
  
//Monitor time and value of the signals clock and reset 
//Clock toggles every 5 time units and reset goes down at 10 time units
initial 
begin 
    $monitor($time, 
               " Value of signals clock = %b reset = %b", clock,reset);
end 
  
 
Partial output of the monitor statement: 
  
-- 0 Value of signals clock = 0 reset = 1 
-- 5 Value of signals clock = 1 reset = 1 
-- 10 Value of signals clock = 0 reset = 0 
  
Stopping and finishing in a simulation 
  
 
The task $stop is provided to stop during a simulation. 
  
 
Usage: $stop; 
  
 
The $stop task puts the simulation in an interactive mode. The designer can then debug 
the design from the interactive mode. The $stop task is used whenever the designer wants 
to suspend the simulation and examine the values of signals in the design. 
  
 
The $finish task terminates the simulation. 
  
 
Usage: $finish; 
  
 
Examples of $stop and $finish are shown in Example 3-6. 
  
Example 3-6 Stop and Finish Tasks 
  
// Stop at time 100 in the simulation and examine the results 
// Finish the simulation at time 1000. 
initial // to be explained later. time = 0 
begin 
clock = 0; 
reset = 1; 
#100 $stop; // This will suspend the simulation at time = 100 
#900 $finish; // This will terminate the simulation at time = 1000 
end 
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3.3.2 Compiler Directives 
  
 
Compiler directives are provided in Verilog. All compiler directives are defined by using 
the `<keyword> construct. We deal with the two most useful compiler directives. 
  
`define 
  
 
The `define directive is used to define text macros in Verilog (see Example 3-7). The 
Verilog compiler substitutes the text of the macro wherever it encounters a 
`<macro_name>. This is similar to the #define construct in C. The defined constants or 
text macros are used in the Verilog code by preceding them with a ` (back tick). 
  
Example 3-7 `define Directive 
  
//define a text macro that defines default word size 
//Used as 'WORD_SIZE in the code 
'define WORD_SIZE 32 
 
//define an alias. A $stop will be substituted wherever 'S appears 
'define S $stop; 
 
//define a frequently used text string 
'define WORD_REG reg [31:0] 
// you can then define a 32-bit register as 'WORD_REG reg32; 
  
`include 
  
 
The `include directive allows you to include entire contents of a Verilog source file in 
another Verilog file during compilation. This works similarly to the #include in the C 
programming language. This directive is typically used to include header files, which 
typically contain global or commonly used definitions (see Example 3-8). 
  
Example 3-8 `include Directive 
  
// Include the file header.v, which contains declarations in the 
// main verilog file design.v. 
'include header.v 
... 
... 
<Verilog code in file design.v> 
... 
... 
  
 
Two other directives, `ifdef and `timescale, are used frequently. They are discussed in 
Chapter 9, Useful Modeling Techniques.  
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3.4 Summary 
  
 
We discussed the basic concepts of Verilog in this chapter. These concepts lay the 
foundation for the material discussed in the further chapters. 
  
 

• Verilog is similar in syntax to the C programming language . Hardware designers 
with previous C programming experience will find Verilog easy to learn. 

 
• Lexical conventions for operators, comments, whitespace, numbers, strings, and 

identifiers were discussed. 
 

• Various data types are available in Verilog. There are four logic values, each with 
different strength levels. Available data types include nets, registers, vectors, 
numbers, simulation time, arrays, memories, parameters, and strings. Data types 
represent actual hardware elements very closely. 

 
• Verilog provides useful system tasks to do functions like displaying, monitoring, 

suspending, and finishing a simulation. 
 

• Compiler directive `define is used to define text macros, and `include is used to 
include other Verilog files. 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 



 
 
 

 
 

59

 
3.5 Exercises 
  
 

1: Practice writing the following numbers: 
  
 

a. Decimal number 123 as a sized 8-bit number in binary. Use _ for 
readability. 

 
b. A 16-bit hexadecimal unknown number with all x's. 

 
c. A 4-bit negative 2 in decimal . Write the 2's complement form for this 

number. 
 

d. An unsized hex number 1234. 

2: Are the following legal strings? If not, write the correct strings. 
  
 

a. "This is a string displaying the % sign" 
 

b. "out = in1 + in2" 
 

c. "Please ring a bell \007" 
 

d. "This is a backslash \ character\n" 

3: Are these legal identifiers? 
  
 

a. system1 
 

b. 1reg 
 

c. $latch 
 

d. exec$ 
 
 
 

4: Declare the following variables in Verilog: 
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a. An 8-bit vector net called a_in. 
 

b. A 32-bit storage register called address. Bit 31 must be the most 
significant bit. Set the value of the register to a 32-bit decimal number 
equal to 3. 

 
c. An integer called count. 

 
d. A time variable called snap_shot. 

 
e. An array called delays. Array contains 20 elements of the type integer. 

 
f. A memory MEM containing 256 words of 64 bits each. 

 
g. A parameter cache_size equal to 512. 

5: What would be the output/effect of the following statements? 
  
 

a. latch = 4'd12; 
      $display("The current value of latch = %b\n", latch); 

 
b. in_reg = 3'd2; 
      $monitor($time, " In register value = %b\n", in_reg[2:0]); 

 
c. `define MEM_SIZE 1024 
      $display("The maximum memory size is %h", 'MEM_SIZE); 
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Chapter 4. Modules and Ports 
  
 
In the previous chapters, we acquired an understanding of the fundamental hierarchical 
modeling concepts, basic conventions, and Verilog constructs. In this chapter, we take a 
closer look at modules and ports from the Verilog language point of view. 
  
 
Learning Objectives 
  
 

• Identify the components of a Verilog module definition, such as module names, 
port lists, parameters, variable declarations, dataflow statements, behavioral 
statements, instantiation of other modules, and tasks or functions. 

 
• Understand how to define the port list for a module and declare it in Verilog. 

 
• Describe the port connection rules in a module instantiation. 

 
• Understand how to connect ports to external signals, by ordered list, and by name.

 
• Explain hierarchical name referencing of Verilog identifiers. 
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4.1 Modules 
  
 
We discussed how a module is a basic building block in Chapter 2, Hierarchical 
Modeling Concepts. We ignored the internals of modules and concentrated on how 
modules are defined and instantiated. In this section, we analyze the internals of the 
module in greater detail. 
  
 
A module in Verilog consists of distinct parts, as shown in Figure 4-1. 
  

 
Figure 4-1. Components of a Verilog Module 

  

 
 
A module definition always begins with the keyword module. The module name, port 
list, port declarations, and optional parameters must come first in a module definition. 
Port list and port declarations are present only if the module has any ports to interact with 
the external environment.The five components within a module are: variable declarations, 
dataflow statements, instantiation of lower modules, behavioral blocks, and tasks or 
functions. These components can be in any order and at any place in the module 
definition. The endmodule statement must always come last in a module definition. All 
components except module, module name, and endmodule are optional and can be mixed 
and matched as per design needs. Verilog allows multiple modules to be defined in a 
single file. The modules can be defined in any order in the file. 
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To understand the components of a module shown above, let us consider a simple 
example of an SR latch, as shown in Figure 4-2. 
  

 
Figure 4-2. SR Latch 

  

 
 
The SR latch has S and R as the input ports and Q and Qbar as the output ports. The SR 
latch and its stimulus can be modeled as shown in Example 4-1. 
  
Example 4-1 Components of SR Latch 
  
// This example illustrates the different components of a module 
 
// Module name and port list 
// SR_latch module 
module SR_latch(Q, Qbar, Sbar, Rbar); 
 
//Port declarations 
output Q, Qbar; 
input Sbar, Rbar; 
 
// Instantiate lower-level modules 
// In this case, instantiate Verilog primitive nand gates 
// Note, how the wires are connected in a cross-coupled fashion. 
nand n1(Q, Sbar, Qbar); 
nand n2(Qbar, Rbar, Q); 
 
// endmodule statement 
endmodule 
 
// Module name and port list 
// Stimulus module 
module Top; 
 
// Declarations of wire, reg, and other variables 
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wire q, qbar; 
reg set, reset; 
 
// Instantiate lower-level modules 
// In this case, instantiate SR_latch 
// Feed inverted set and reset signals to the SR latch 
SR_latch m1(q, qbar, ~set, ~reset); 
 
// Behavioral block, initial 
initial 
begin 
  $monitor($time, " set = %b, reset= %b, q= %b\n",set,reset,q); 
  set = 0; reset = 0; 
  #5 reset = 1; 
  #5 reset = 0; 
  #5 set = 1; 
end 
 
// endmodule statement 
endmodule 
  
 
Notice the following characteristics about the modules defined above: 
  
 

• In the SR latch definition above , notice that all components described in Figure 
4-1 need not be present in a module. We do not find variable declarations, 
dataflow (assign) statements, or behavioral blocks (always or initial). 

 
• However, the stimulus block for the SR latch contains module name, wire, reg, 

and variable declarations, instantiation of lower level modules, behavioral block 
(initial), and endmodule statement but does not contain port list, port declarations, 
and data flow (assign) statements. 

 
• Thus, all parts except module, module name, and endmodule are optional and can 

be mixed and matched as per design needs. 
  
 
 
  
 
4.2 Ports 
  
 
Ports provide the interface by which a module can communicate with its environment. 
For example, the input/output pins of an IC chip are its ports. The environment can 
interact with the module only through its ports. The internals of the module are not 
visible to the environment. This provides a very powerful flexibility to the designer. The 
internals of the module can be changed without affecting the environment as long as the 
interface is not modified. Ports are also referred to as terminals. 
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4.2.1 List of Ports 
  
 
A module definition contains an optional list of ports. If the module does not exchange 
any signals with the environment, there are no ports in the list. Consider a 4-bit full adder 
that is instantiated inside a top-level module Top. The diagram for the input/output ports 
is shown in Figure 4-3. 
  

 
Figure 4-3. I/O Ports for Top and Full Adder 

  

 
 
Notice that in the above figure, the module Top is a top-level module. The module 
fulladd4 is instantiated below Top. The module fulladd4 takes input on ports a, b, and 
c_in and produces an output on ports sum and c_out. Thus, module fulladd4 performs an 
addition for its environment. The module Top is a top-level module in the simulation and 
does not need to pass signals to or receive signals from the environment. Thus, it does not 
have a list of ports. The module names and port lists for both module declarations in 
Verilog are as shown in Example 4-2. 
  
Example 4-2 List of Ports 
  
module fulladd4(sum, c_out, a, b, c_in); //Module with a list of ports 
module Top; // No list of ports, top-level module in simulation 
  
4.2.2 Port Declaration 
  
 
All ports in the list of ports must be declared in the module. Ports can be declared as 
follows: 
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Verilog Keyword Type of Port 

input Input port 

output Output port 

inout Bidirectional port 
 
Each port in the port list is defined as input, output, or inout, based on the direction of the 
port signal. Thus, for the example of the fulladd4 in Example 4-2, the port declarations 
will be as shown in Example 4-3. 
  
Example 4-3 Port Declarations 
  
module fulladd4(sum, c_out, a, b, c_in); 
 
//Begin port declarations section 
output[3:0] sum; 
output c_cout; 
 
input [3:0] a, b; 
input c_in; 
//End port declarations section 
... 
<module internals> 
... 
endmodule 
  
 
Note that all port declarations are implicitly declared as wire in Verilog. Thus, if a port is 
intended to be a wire, it is sufficient to declare it as output, input, or inout. Input or inout 
ports are normally declared as wires. However, if output ports hold their value, they must 
be declared as reg. For example, in the definition of DFF, in Example 2-5, we wanted the 
output q to retain its value until the next clock edge. The port declarations for DFF will 
look as shown in Example 4-4. 
  
Example 4-4 Port Declarations for DFF 
  
module DFF(q, d, clk, reset); 
output q; 
reg q; // Output port q holds value; therefore it is declared as reg. 
input d, clk, reset; 
... 
... 
endmodule 
  
 
Ports of the type input and inout cannot be declared as reg because reg variables store 
values and input ports should not store values but simply reflect the changes in the 
external signals they are connected to. 
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Note that the module fulladd4 in Example 4-3 can be declared using an ANSI C style 
syntax to specify the ports of that module. Each declared port provides the complete 
information about the port. Example 4-5 shows this alternate syntax. This syntax avoids 
the duplication of naming the ports in both the module definition statement and the 
module port list definitions. If a port is declared but no data type is specified, then, under 
specific circumstances, the signal will default to a wire data type. 
  
Example 4-5 ANSI C Style Port Declaration Syntax 
  
module fulladd4(output reg [3:0] sum, 
                output reg c_out, 
                input [3:0] a, b, //wire by default 
                input c_in); //wire by default 
... 
<module internals> 
... 
endmodule 
  
4.2.3 Port Connection Rules 
  
 
One can visualize a port as consisting of two units, one unit that is internal to the module 
and another that is external to the module. The internal and external units are connected. 
There are rules governing port connections when modules are instantiated within other 
modules. The Verilog simulator complains if any port connection rules are violated. 
These rules are summarized in Figure 4-4. 
  

 
Figure 4-4. Port Connection Rules 
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Inputs 
  
Internally, input ports must always be of the type net. Externally, the inputs can be 
connected to a variable which is a reg or a net. 
  
 
Outputs 
 
Internally, outputs ports can be of the type reg or net. Externally, outputs must always be 
connected to a net. They cannot be connected to a reg. 
 
  
Inouts 
 
Internally, inout ports must always be of the type net. Externally, inout ports must always 
be connected to a net. 
 
  
Width matching 
 
It is legal to connect internal and external items of different sizes when making inter-
module port connections. However, a warning is typically issued that the widths do not 
match. 
 
  
Unconnected ports 
  
Verilog allows ports to remain unconnected. For example, certain output ports might be 
simply for debugging, and you might not be interested in connecting them to the external 
signals. You can let a port remain unconnected by instantiating a module as shown 
below. 
  
fulladd4 fa0(SUM, , A, B, C_IN); // Output port c_out is unconnected 
  
 
Example of illegal port connection 
  
To illustrate port connection rules, assume that the module fulladd4 in Example 4-3 is 
instantiated in the stimulus block Top. Example 4-6 shows an illegal port connection. 
  
Example 4-6 Illegal Port Connection 
  
module Top; 
 
//Declare connection variables 
reg [3:0]A,B; 
reg C_IN; 
reg [3:0] SUM; 
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wire C_OUT; 
 
    //Instantiate fulladd4, call it fa0 
    fulladd4 fa0(SUM, C_OUT, A, B, C_IN); 
    //Illegal connection because output port sum in module fulladd4 
    //is connected to a register variable SUM in module Top. 
    . 
    . 
    <stimulus> 
    . 
    . 
endmodule 
  
 
This problem is rectified if the variable SUM is declared as a net (wire). 
  
 
4.2.4 Connecting Ports to External Signals 
  
There are two methods of making connections between signals specified in the module 
instantiation and the ports in a module definition. These two methods cannot be mixed. 
These methods are discussed in the following sections. 
  
 
Connecting by ordered list 
  
Connecting by ordered list is the most intuitive method for most beginners. The signals to 
be connected must appear in the module instantiation in the same order as the ports in the 
port list in the module definition. Once again, consider the module fulladd4 defined in 
Example 4-3. To connect signals in module Top by ordered list, the Verilog code is 
shown in Example 4-7. Notice that the external signals SUM, C_OUT, A, B, and C_IN 
appear in exactly the same order as the ports sum, c_out, a, b, and c_in in module 
definition of fulladd4. 
  
Example 4-7 Connection by Ordered List 
  
module Top; 
 
//Declare connection variables 
reg [3:0]A,B; 
reg C_IN; 
wire [3:0] SUM; 
wire C_OUT; 
 
    //Instantiate fulladd4, call it fa_ordered. 
    //Signals are connected to ports in order (by position) 
    fulladd4 fa_ordered(SUM, C_OUT, A, B, C_IN); 
    ... 
    <stimulus> 
    ... 
endmodule 
 



 
 
 

 
 

70

 
module fulladd4(sum, c_out, a, b, c_in); 
output[3:0] sum; 
output c_cout; 
input [3:0] a, b; 
input c_in; 
    ... 
    <module internals> 
    ... 
endmodule 
  
 
Connecting ports by name 
  
For large designs where modules have, say, 50 ports, remembering the order of the ports 
in the module definition is impractical and error-prone. Verilog provides the capability to 
connect external signals to ports by the port names, rather than by position. We could 
connect the ports by name in Example 4-7 above by instantiating the module fulladd4, as 
follows. Note that you can specify the port connections in any order as long as the port 
name in the module definition correctly matches the external signal. 
  
// Instantiate module fa_byname and connect signals to ports by name 
fulladd4 fa_byname(.c_out(C_OUT), .sum(SUM), .b(B), .c_in(C_IN), 
.a(A),); 
  
 
Note that only those ports that are to be connected to external signals must be specified in 
port connection by name. Unconnected ports can be dropped. For example, if the port 
c_out were to be kept unconnected, the instantiation of fulladd4 would look as follows. 
The port c_out is simply dropped from the port list. 
  
// Instantiate module fa_byname and connect signals to ports by name 
fulladd4 fa_byname(.sum(SUM), .b(B), .c_in(C_IN), .a(A),); 
  
 
Another advantage of connecting ports by name is that as long as the port name is not 
changed, the order of ports in the port list of a module can be rearranged without 
changing the port connections in module instantiations. 
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4.3 Hierarchical Names 
  
 
We described earlier how Verilog supports a hierarchical design methodology. Every 
module instance, signal, or variable is defined with an identifier. A particular identifier 
has a unique place in the design hierarchy. Hierarchical name referencing allows us to 
denote every identifier in the design hierarchy with a unique name. A hierarchical name 
is a list of identifiers separated by dots (".") for each level of hierarchy. Thus, any 
identifier can be addressed from any place in the design by simply specifying the 
complete hierarchical name of that identifier. 
  
 
The top-level module is called the root module because it is not instantiated anywhere. It 
is the starting point. To assign a unique name to an identifier, start from the top-level 
module and trace the path along the design hierarchy to the desired identifier. To clarify 
this process, let us consider the simulation of SR latch in Example 4-1. The design 
hierarchy is shown in Figure 4-5. 
  

 
Figure 4-5. Design Hierarchy for SR Latch Simulation 

  

 
 
For this simulation, stimulus is the top-level module. Since the top-level module is not 
instantiated anywhere, it is called the root module. The identifiers defined in this module 
are q, qbar, set, and reset. The root module instantiates m1, which is a module of type 
SR_latch. The module m1 instantiates nand gates n1 and n2. Q, Qbar, S, and R are port 
signals in instance m1. Hierarchical name referencing assigns a unique name to each 
identifier. To assign hierarchical names, use the module name for root module and 
instance names for all module instances below the root module. Example 4-8 shows 
hierarchical names for all identifiers in the above simulation. Notice that there is a dot (.) 
for each level of hierarchy from the root module to the desired identifier. 
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Example 4-8 Hierarchical Names 
  
stimulus                                stimulus.q 
stimulus.qbar                           stimulus.set 
stimulus.reset                          stimulus.m1 
stimulus.m1.Q                           stimulus.m1.Qbar 
stimulus.m1.S                           stimulus.m1.R 
stimulus.n1                             stimulus.n2 
  
 
Each identifier in the design is uniquely specified by its hierarchical path name. To 
display the level of hierarchy, use the special character %m in the $display task. See 
Table 3-4, String Format Specifications, for details. 
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4.4 Summary 
  
 
In this chapter, we discussed the following aspects of Verilog: 
  
 

• Module definitions contain various components. Keywords module and 
endmodule are mandatory. Other components?port list, port declarations, variable 
and signal declarations, dataflow statements, behavioral blocks, lower-level 
module instantiations, and tasks or functions?are optional and can be added as 
needed. 

 
• Ports provide the module with a means to communicate with other modules or its 

environment. A module can have a port list. Ports in the port list must be declared 
as input, output, or inout. When instantiating a module, port connection rules are 
enforced by the Verilog simulator. An ANSI C style embeds the port declarations 
in the module definition statement. 

 
• Ports can be connected by name or by ordered list. 

 
• Each identifier in the design has a unique hierarchical name. Hierarchical names 

allow us to address any identifier in the design from any other level of hierarchy 
in the design. 
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4.5 Exercises 
  
 

1: What are the basic components of a module? Which components are 
mandatory? 

2:  
Does a module that does not interact with its environment have any I/O ports? 
Does it have a port list in the module definition? 

3: A 4-bit parallel shift register has I/O pins as shown in the figure below. Write 
the module definition for this module shift_reg. Include the list of ports and port 
declarations. You do not need to show the internals. 
  

 

4: Declare a top-level module stimulus. Define REG_IN (4 bit) and CLK (1 bit) as 
reg register variables and REG_OUT (4 bit) as wire. Instantiate the module 
shift_reg and call it sr1. Connect the ports by ordered list. 

5: Connect the ports in Step 4 by name. 

6:  
Write the hierarchical names for variables REG_IN, CLK, and REG_OUT. 

7: Write the hierarchical name for the instance sr1. Write the hierarchical names 
for its ports clock and reg_in. 
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Chapter 5. Gate-Level Modeling 
  
 
In the earlier chapters, we laid the foundations of Verilog design by discussing design 
methodologies, basic conventions and constructs, modules and port interfaces. In this 
chapter, we get into modeling actual hardware circuits in Verilog. 
  
 
We discussed the four levels of abstraction used to describe hardware. In this chapter, we 
discuss a design at a low level of abstraction?gate level. Most digital design is now done 
at gate level or higher levels of abstraction. At gate level, the circuit is described in terms 
of gates (e.g., and, nand). Hardware design at this level is intuitive for a user with a basic 
knowledge of digital logic design because it is possible to see a one-to-one 
correspondence between the logic circuit diagram and the Verilog description. Hence, in 
this book, we chose to start with gate-level modeling and move to higher levels of 
abstraction in the succeeding chapters. 
  
 
Actually, the lowest level of abstraction is switch- (transistor-) level modeling. However, 
with designs getting very complex, very few hardware designers work at switch level. 
Therefore, we will defer switch-level modeling to Chapter 11, Switch-Level Modeling, in 
Part 2 of this book. 
  
 
Learning Objectives 
  
 

• Identify logic gate primitives provided in Verilog. 
 

• Understand instantiation of gates, gate symbols, and truth tables for and/or and 
buf/not type gates. 

 
• Understand how to construct a Verilog description from the logic diagram of the 

circuit. 
 

• Describe rise, fall, and turn-off delays in the gate-level design. 
 

• Explain min, max, and typ delays in the gate-level design. 
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5.1 Gate Types 
  
 
A logic circuit can be designed by use of logic gates. Verilog supports basic logic gates 
as predefined primitives. These primitives are instantiated like modules except that they 
are predefined in Verilog and do not need a module definition. All logic circuits can be 
designed by using basic gates. There are two classes of basic gates: and/or gates and 
buf/not gates. 
  
5.1.1 And/Or Gates 
  
 
And/or gates have one scalar output and multiple scalar inputs. The first terminal in the 
list of gate terminals is an output and the other terminals are inputs. The output of a gate 
is evaluated as soon as one of the inputs changes. The and/or gates available in Verilog 
are shown below. 
  
and     or       xor 
nand    nor      xnor 
  
 
The corresponding logic symbols for these gates are shown in Figure 5-1. We consider 
gates with two inputs. The output terminal is denoted by out. Input terminals are denoted 
by i1 and i2. 
  

 
Figure 5-1. Basic Gates 
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These gates are instantiated to build logic circuits in Verilog. Examples of gate 
instantiations are shown below. In Example 5-1, for all instances, OUT is connected to 
the output out, and IN1 and IN2 are connected to the two inputs i1 and i2 of the gate 
primitives. Note that the instance name does not need to be specified for primitives. This 
lets the designer instantiate hundreds of gates without giving them a name. 
  
 
More than two inputs can be specified in a gate instantiation. Gates with more than two 
inputs are instantiated by simply adding more input ports in the gate instantiation (see 
Example 5-1). Verilog automatically instantiates the appropriate gate. 
  
Example 5-1 Gate Instantiation of And/Or Gates 
  
wire OUT, IN1, IN2; 
 
// basic gate instantiations. 
and a1(OUT, IN1, IN2); 
nand na1(OUT, IN1, IN2); 
or or1(OUT, IN1, IN2); 
nor nor1(OUT, IN1, IN2); 
xor x1(OUT, IN1, IN2); 
xnor nx1(OUT, IN1, IN2); 
 
// More than two inputs; 3 input nand gate 
nand na1_3inp(OUT, IN1, IN2, IN3); 
 
// gate instantiation without instance name 
and (OUT, IN1, IN2); // legal gate instantiation 
  
 
The truth tables for these gates define how outputs for the gates are computed from the 
inputs. Truth tables are defined assuming two inputs. The truth tables for these gates are 
shown in Table 5-1. Outputs of gates with more than two inputs are computed by 
applying the truth table iteratively. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
 

78

 
Table 5-1. Truth Tables for And/Or  

 

Gates  
 
5.1.2 Buf/Not Gates 
  
 
Buf/not gates have one scalar input and one or more scalar outputs. The last terminal in 
the port list is connected to the input. Other terminals are connected to the outputs. We 
will discuss gates that have one input and one output. 
  
 
Two basic buf/not gate primitives are provided in Verilog. 
  
buf         not 
  
 
The symbols for these logic gates are shown in Figure 5-2. 
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Figure 5-2. Buf and Not Gates 
  

 
 
These gates are instantiated in Verilog as shown Example 5-2. Notice that these gates can 
have multiple outputs but exactly one input, which is the last terminal in the port list. 
  
Example 5-2 Gate Instantiations of Buf/Not Gates 
  
// basic gate instantiations. 
buf b1(OUT1, IN); 
not n1(OUT1, IN); 
 
// More than two outputs 
buf b1_2out(OUT1, OUT2, IN); 
 
// gate instantiation without instance name 
not (OUT1, IN); // legal gate instantiation 
  
 
The truth tables for these gates are very simple. Truth tables for gates with one input and 
one output are shown in Table 5-2. 
  

 
Table 5-2. Truth Tables for Buf/Not Gates 

  

 
 
Bufif/notif 
  
 
Gates with an additional control signal on buf and not gates are also available. 
  
bufif1       notif1 
bufif0       notif0 
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These gates propagate only if their control signal is asserted. They propagate z if their 
control signal is deasserted. Symbols for bufif/notif are shown in Figure 5-3. 
  

 
Figure 5-3. Gates Bufif and Notif 

  

 
 
The truth tables for these gates are shown in Table 5-3. 
  

 
Table 5-3. Truth Tables for Bufif/Notif Gates 

  

 
 
These gates are used when a signal is to be driven only when the control signal is 
asserted. Such a situation is applicable when multiple drivers drive the signal.  
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These drivers are designed to drive the signal on mutually exclusive control signals. 
Example 5-3 shows examples of instantiation of bufif and notif gates. 
  
Example 5-3 Gate Instantiations of Bufif/Notif Gates 
  
//Instantiation of bufif gates. 
bufif1 b1 (out, in, ctrl); 
bufif0 b0 (out, in, ctrl); 
 
//Instantiation of notif gates 
notif1 n1 (out, in, ctrl); 
notif0 n0 (out, in, ctrl); 
  
 
5.1.3 Array of Instances 
  
 
There are many situations when repetitive instances are required. These instances differ 
from each other only by the index of the vector to which they are connected. To simplify 
specification of such instances, Verilog HDL allows an array of primitive instances to be 
defined.[1] Example 5-4 shows an example of an array of instances. 
 
[1] Refer to the IEEE Standard Verilog Hardware Description Language document for 
detailed information on the use of an array of instances. 
  
Example 5-4 Simple Array of Primitive Instances 
  
wire [7:0] OUT, IN1, IN2; 
 
// basic gate instantiations. 
nand n_gate[7:0](OUT, IN1, IN2); 
 
// This is equivalent to the following 8 instantiations 
nand n_gate0(OUT[0], IN1[0], IN2[0]); 
nand n_gate1(OUT[1], IN1[1], IN2[1]); 
nand n_gate2(OUT[2], IN1[2], IN2[2]); 
nand n_gate3(OUT[3], IN1[3], IN2[3]); 
nand n_gate4(OUT[4], IN1[4], IN2[4]); 
nand n_gate5(OUT[5], IN1[5], IN2[5]); 
nand n_gate6(OUT[6], IN1[6], IN2[6]); 
nand n_gate7(OUT[7], IN1[7], IN2[7]); 
  
5.1.4 Examples 
  
 
Having understood the various types of gates available in Verilog, we will discuss a real 
example that illustrates design of gate-level digital circuits. 
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Gate-level multiplexer 
  
 
We will design a 4-to-1 multiplexer with 2 select signals. Multiplexers serve a useful 
purpose in logic design. They can connect two or more sources to a single destination. 
They can also be used to implement boolean functions. We will assume for this example 
that signals s1 and s0 do not get the value x or z. The I/O diagram and the truth table for 
the multiplexer are shown in Figure 5-4. The I/O diagram will be useful in setting up the 
port list for the multiplexer. 
  

Figure 5-4. 4-to-1 Multiplexer 
  

 
 
We will implement the logic for the multiplexer using basic logic gates. The logic 
diagram for the multiplexer is shown in Figure 5-5. 
  

Figure 5-5. Logic Diagram for Multiplexer 
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The logic diagram has a one-to-one correspondence with the Verilog description. The 
Verilog description for the multiplexer is shown in Example 5-5. Two intermediate nets, 
s0n and s1n, are created; they are complements of input signals s1 and s0. Internal nets 
y0, y1, y2, y3 are also required. Note that instance names are not specified for primitive 
gates, not, and, and or. Instance names are optional for Verilog primitives but are 
mandatory for instances of user-defined modules. 
  
Example 5-5 Verilog Description of Multiplexer 
  
// Module 4-to-1 multiplexer. Port list is taken exactly from 
// the I/O diagram. 
module mux4_to_1 (out, i0, i1, i2, i3, s1, s0); 
 
// Port declarations from the I/O diagram 
output out; 
input i0, i1, i2, i3; 
input s1, s0; 
 
// Internal wire declarations 
wire s1n, s0n; 
wire y0, y1, y2, y3; 
 
// Gate instantiations 
 
// Create s1n and s0n signals. 
not (s1n, s1); 
not (s0n, s0); 
 
// 3-input and gates instantiated 
and (y0, i0, s1n, s0n); 
and (y1, i1, s1n, s0); 
and (y2, i2, s1, s0n); 
and (y3, i3, s1, s0); 
 
// 4-input or gate instantiated 
or (out, y0, y1, y2, y3); 
 
endmodule 
  
 
This multiplexer can be tested with the stimulus shown in Example 5-6. The stimulus 
checks that each combination of select signals connects the appropriate input to the 
output. The signal OUTPUT is displayed one time unit after it changes. System task 
$monitor could also be used to display the signals when they change values. 
  
Example 5-6 Stimulus for Multiplexer 
  
// Define the stimulus module (no ports) 
module stimulus; 
 
// Declare variables to be connected 
// to inputs 
reg IN0, IN1, IN2, IN3; 
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reg S1, S0; 
 
// Declare output wire 
wire OUTPUT; 
 
// Instantiate the multiplexer 
mux4_to_1 mymux(OUTPUT, IN0, IN1, IN2, IN3, S1, S0); 
 
// Stimulate the inputs 
// Define the stimulus module (no ports) 
initial 
begin 
  // set input lines 
  IN0 = 1; IN1 = 0; IN2 = 1; IN3 = 0; 
  #1 $display("IN0= %b, IN1= %b, IN2= %b, IN3= %b\n",IN0,IN1,IN2,IN3); 
 
  // choose IN0 
  S1 = 0; S0 = 0; 
  #1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT); 
 
  // choose IN1 
  S1 = 0; S0 = 1; 
  #1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT); 
 
  // choose IN2 
  S1 = 1; S0 = 0; 
  #1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT); 
 
  // choose IN3 
  S1 = 1; S0 = 1; 
  #1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT); 
end 
 
endmodule 
  
 
The output of the simulation is shown below. Each combination of the select signals is 
tested. 
  
IN0= 1, IN1= 0, IN2= 1, IN3= 0 
 
S1 = 0, S0 = 0, OUTPUT = 1 
 
S1 = 0, S0 = 1, OUTPUT = 0 
 
S1 = 1, S0 = 0, OUTPUT = 1 
 
S1 = 1, S0 = 1, OUTPUT = 0 
  
4-bit Ripple Carry Full Adder 
  
 
In this example, we design a 4-bit full adder whose port list was defined in Section 4.2.1, 
List of Ports. We use primitive logic gates, and we apply stimulus to the 4-bit full adder 
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to check functionality . For the sake of simplicity, we will implement a ripple carry adder. 
The basic building block is a 1-bit full adder. The mathematical equations for a 1-bit full 
adder are shown below. 
  
sum = (a b cin) 
 
cout = (a b) + cin (a b) 
  
 
The logic diagram for a 1-bit full adder is shown in Figure 5-6. 
  

 
Figure 5-6. 1-bit Full Adder 

  

 
 
This logic diagram for the 1-bit full adder is converted to a Verilog description, shown in 
Example 5-7. 
  
Example 5-7 Verilog Description for 1-bit Full Adder 
  
// Define a 1-bit full adder 
module fulladd(sum, c_out, a, b, c_in); 
 
// I/O port declarations 
output sum, c_out; 
input a, b, c_in; 
 
// Internal nets 
wire s1, c1, c2; 
 
// Instantiate logic gate primitives 
xor (s1, a, b); 
and (c1, a, b); 
 
xor (sum, s1, c_in); 
and (c2, s1, c_in); 
 
xor  (c_out, c2, c1); 
 
endmodule 
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A 4-bit ripple carry full adder can be constructed from four 1-bit full adders, as shown in 
Figure 5-7. Notice that fa0, fa1, fa2, and fa3 are instances of the module fulladd (1-bit 
full adder). 
  

 
Figure 5-7. 4-bit Ripple Carry Full Adder 

  

 
 
This structure can be translated to Verilog as shown in Example 5-8. Note that the port 
names used in a 1-bit full adder and a 4-bit full adder are the same but they represent 
different elements. The element sum in a 1-bit adder is a scalar quantity and the element 
sum in the 4-bit full adder is a 4-bit vector quantity. Verilog keeps names local to a 
module. Names are not visible outside the module unless hierarchical name referencing is 
used. Also note that instance names must be specified when defined modules are 
instantiated, but when instantiating Verilog primitives, the instance names are optional. 
  
Example 5-8 Verilog Description for 4-bit Ripple Carry Full Adder 
  
// Define a 4-bit full adder 
module fulladd4(sum, c_out, a, b, c_in); 
 
// I/O port declarations 
output [3:0] sum; 
output c_out; 
input[3:0] a, b; 
input c_in; 
 
// Internal nets 
wire c1, c2, c3; 
 
// Instantiate four 1-bit full adders. 
fulladd fa0(sum[0], c1, a[0], b[0], c_in); 
fulladd fa1(sum[1], c2, a[1], b[1], c1); 
fulladd fa2(sum[2], c3, a[2], b[2], c2); 
fulladd fa3(sum[3], c_out, a[3], b[3], c3); 
 
endmodule 
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Finally, the design must be checked by applying stimulus, as shown in Example 5-9. The 
module stimulus stimulates the 4-bit full adder by applying a few input combinations and 
monitors the results. 
  
Example 5-9 Stimulus for 4-bit Ripple Carry Full Adder 
  
// Define the stimulus (top level module) 
module stimulus; 
 
// Set up variables 
reg [3:0] A, B; 
reg C_IN; 
wire [3:0] SUM; 
wire C_OUT; 
 
// Instantiate the 4-bit full adder. call it FA1_4 
fulladd4 FA1_4(SUM, C_OUT, A, B, C_IN); 
 
 
// Set up the monitoring for the signal values 
initial 
begin 
  $monitor($time," A= %b, B=%b, C_IN= %b, --- C_OUT= %b, SUM= %b\n", 
                          A, B, C_IN, C_OUT, SUM); 
end 
 
// Stimulate inputs 
initial 
begin 
  A = 4'd0; B = 4'd0; C_IN = 1'b0; 
 
  #5 A = 4'd3; B = 4'd4; 
 
  #5 A = 4'd2; B = 4'd5; 
 
  #5 A = 4'd9; B = 4'd9; 
 
  #5 A = 4'd10; B = 4'd15; 
 
  #5 A = 4'd10; B = 4'd5; C_IN = 1'b1; 
end 
 
endmodule 
  
 
The output of the simulation is shown below. 
  
0 A= 0000, B=0000, C_IN= 0, --- C_OUT= 0, SUM= 0000 
5 A= 0011, B=0100, C_IN= 0, --- C_OUT= 0, SUM= 0111 
10 A= 0010, B=0101, C_IN= 0, --- C_OUT= 0, SUM= 0111 
15 A= 1001, B=1001, C_IN= 0, --- C_OUT= 1, SUM= 0010 
20 A= 1010, B=1111, C_IN= 0, --- C_OUT= 1, SUM= 1001 
25 A= 1010, B=0101, C_IN= 1,, C_OUT= 1, SUM= 0000 
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5.2 Gate Delays 
  
 
Until now, we described circuits without any delays (i.e., zero delay). In real circuits, 
logic gates have delays associated with them. Gate delays allow the Verilog user to 
specify delays through the logic circuits. Pin-to-pin delays can also be specified in 
Verilog. They are discussed in Chapter 10, Timing and Delays. 
  
5.2.1 Rise, Fall, and Turn-off Delays 
  
 
There are three types of delays from the inputs to the output of a primitive gate. 
  
Rise delay 
  
 
The rise delay is associated with a gate output transition to a 1 from another value. 
  

 
 
Fall delay 
  
 
The fall delay is associated with a gate output transition to a 0 from another value. 
  

 
 
Turn-off delay 
  
 
The turn-off delay is associated with a gate output transition to the high impedance value 
(z) from another value. 
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If the value changes to x, the minimum of the three delays is considered. 
  
 
Three types of delay specifications are allowed. If only one delay is specified, this value 
is used for all transitions. If two delays are specified, they refer to the rise and fall delay 
values. The turn-off delay is the minimum of the two delays. If all three delays are 
specified, they refer to rise, fall, and turn-off delay values. If no delays are specified, the 
default value is zero. Examples of delay specification are shown in Example 5-10. 
  
Example 5-10 Types of Delay Specification 
  
// Delay of delay_time for all transitions 
and #(delay_time) a1(out, i1, i2); 
 
// Rise and Fall Delay Specification. 
and #(rise_val, fall_val) a2(out, i1, i2); 
 
// Rise, Fall, and Turn-off Delay Specification 
bufif0 #(rise_val, fall_val, turnoff_val) b1 (out, in, control); 
  
 
Examples of delay specification are shown below. 
  
and #(5) a1(out, i1, i2); //Delay of 5 for all transitions 
and #(4,6) a2(out, i1, i2); // Rise = 4, Fall = 6 
bufif0 #(3,4,5) b1 (out, in, control); // Rise = 3, Fall = 4, Turn-off 
= 5 
  
5.2.2 Min/Typ/Max Values 
  
 
Verilog provides an additional level of control for each type of delay mentioned above. 
For each type of delay?rise, fall, and turn-off?three values, min, typ, and max, can be 
specified. Any one value can be chosen at the start of the simulation. Min/typ/max values 
are used to model devices whose delays vary within a minimum and maximum range 
because of the IC fabrication process variations. 
  
Min value 
  
 
The min value is the minimum delay value that the designer expects the gate to have. 
  
Typ val 
  
 
The typ value is the typical delay value that the designer expects the gate to have. 
  
Max value 
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The max value is the maximum delay value that the designer expects the gate to have. 
  
 
Min, typ, or max values can be chosen at Verilog run time. Method of choosing a 
min/typ/max value may vary for different simulators or operating systems. (For Verilog-
XL , the values are chosen by specifying options +maxdelays, +typdelays, and 
+mindelays at run time. If no option is specified, the typical delay value is the default). 
This allows the designers the flexibility of building three delay values for each transition 
into their design. The designer can experiment with delay values without modifying the 
design. 
  
 
Examples of min, typ, and max value specification for Verilog-XL are shown in Example 
5-11. 
  
Example 5-11 Min, Max, and Typical Delay Values 
  
// One delay 
// if +mindelays, delay= 4 
// if +typdelays, delay= 5 
// if +maxdelays, delay= 6 
and #(4:5:6) a1(out, i1, i2); 
 
// Two delays 
// if +mindelays, rise= 3, fall= 5, turn-off = min(3,5) 
// if +typdelays, rise= 4, fall= 6, turn-off = min(4,6) 
// if +maxdelays, rise= 5, fall= 7, turn-off = min(5,7) 
and #(3:4:5, 5:6:7) a2(out, i1, i2); 
 
// Three delays 
// if +mindelays, rise= 2 fall= 3 turn-off = 4 
// if +typdelays, rise= 3 fall= 4 turn-off = 5 
// if +maxdelays, rise= 4 fall= 5 turn-off = 6 
and #(2:3:4, 3:4:5, 4:5:6) a3(out, i1,i2); 
  
 
Examples of invoking the Verilog-XL simulator with the command-line options are 
shown below. Assume that the module with delays is declared in the file test.v. 
  
//invoke simulation with maximum delay 
> verilog test.v +maxdelays 
 
//invoke simulation with minimum delay 
> verilog test.v +mindelays 
 
//invoke simulation with typical delay 
> verilog test.v +typdelays 
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5.2.3 Delay Example 
  
 
Let us consider a simple example to illustrate the use of gate delays to model timing in 
the logic circuits. A simple module called D implements the following logic equations: 
  
 
 
out = (a b) + c 
  
 
The gate-level implementation is shown in Module D (Figure 5-8). The module contains 
two gates with delays of 5 and 4 time units. 
  

 
Figure 5-8. Module D 

  

 
 
The module D is defined in Verilog as shown in Example 5-12. 
  
Example 5-12 Verilog Definition for Module D with Delay 
  
// Define a simple combination module called D 
module D (out, a, b, c); 
 
// I/O port declarations 
output out; 
input a,b,c; 
 
// Internal nets 
wire e; 
 
// Instantiate primitive gates to build the circuit 
and #(5) a1(e, a, b); //Delay of 5 on gate a1 
or  #(4) o1(out, e,c); //Delay of 4 on gate o1 
 
endmodule 
  



 
 
 

 
 

92

 
This module is tested by the stimulus file shown in Example 5-13. 
  
Example 5-13 Stimulus for Module D with Delay 
  
// Stimulus (top-level module) 
module stimulus; 
 
// Declare variables 
reg A, B, C; 
wire OUT; 
 
// Instantiate the module D 
D d1( OUT, A, B, C); 
 
// Stimulate the inputs. Finish the simulation at 40 time units. 
initial 
begin 
  A= 1'b0; B= 1'b0; C= 1'b0; 
 
  #10 A= 1'b1; B= 1'b1; C= 1'b1; 
 
  #10 A= 1'b1; B= 1'b0; C= 1'b0; 
 
  #20 $finish; 
end 
 
endmodule 
  
 
The waveforms from the simulation are shown in Figure 5-9 to illustrate the effect of 
specifying delays on gates. The waveforms are not drawn to scale. However, simulation 
time at each transition is specified below the transition. 
  

1. The outputs E and OUT are initially unknown. 
 

2. At time 10, after A, B, and C all transition to 1, OUT transitions to 1 after a delay 
of 4 time units and E changes value to 1 after 5 time units. 

 
3. At time 20, B and C transition to 0. E changes value to 0 after 5 time units, and 

OUT transitions to 0, 4 time units after E changes. 
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Figure 5-9. Waveforms for Delay Simulation 
  

 
 
It is a useful exercise to understand how the timing for each transition in the above 
waveform corresponds to the gate delays shown in Module D. 
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5.3 Summary 
  
 
In this chapter, we discussed how to model gate-level logic in Verilog. We also discussed 
different aspects of gate-level design. 
  
 

• The basic types of gates are and, or, xor, buf, and not. Each gate has a logic 
symbol, truth table, and a corresponding Verilog primitive. Primitives are 
instantiated like modules except that they are predefined in Verilog. The output of 
a gate is evaluated as soon as one of its inputs changes. 

 
• Arrays of built-in primitive instances and user-defined modules can be defined in 

Verilog. 
 

• For gate-level design, start with the logic diagram, write the Verilog description 
for the logic by using gate primitives, provide stimulus, and look at the output. 
Two design examples, a 4-to-1 multiplexer and a 4-bit full adder, were discussed. 
Each step of the design process was explained. 

 
• Three types of delays are associated with gates: rise, fall, and turn-off. Verilog 

allows specification of one, two, or three delays for each gate. Values of rise, fall, 
and turn-off delays are computed by Verilog, based on the one, two, or three 
delays specified. 

 
• For each type of delay, a minimum, typical, and maximum value can be specified. 

The user can choose which value to apply at simulation time. This provides the 
flexibility to experiment with three delay values without changing the Verilog 
code. 

 
• The effect of propagation delay on waveforms was explained by the simple, two-

gate logic example. For each gate with a delay of t, the output changes t time units 
after any of the inputs change. 
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5.4 Exercises 
  
 

1: Create your own 2-input Verilog gates called my-or, my-and and my-not from 
2-input nand gates. Check the functionality of these gates with a stimulus 
module. 

2: A 2-input xor gate can be built from my_and, my_or and my_not gates. 
Construct an xor module in Verilog that realizes the logic function, z = xy' + 
x'y. Inputs are x and y, and z is the output. Write a stimulus module that 
exercises all four combinations of x and y inputs. 

3: The 1-bit full adder described in the chapter can be expressed in a sum of 
products form. 
  
sum = a.b.c_in + a'.b.c_in' + a'.b'.c_in + a.b'.c_in' 
 
c_out = a.b + b.c_in + a.c_in 
  
Assuming a, b, c_in are the inputs and sum and c_out are the outputs, design a 
logic circuit to implement the 1-bit full adder, using only and, not, and or gates. 
Write the Verilog description for the circuit. You may use up to 4-input Verilog 
primitive and and or gates. Write the stimulus for the full adder and check the 
functionality for all input combinations. 

4: The logic diagram for an RS latch with delay is shown below. 
  

 
 
Write the Verilog description for the RS latch. Include delays of 1 unit when 
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instantiating the nor gates. Write the stimulus module for the RS latch, using the 
following table, and verify the outputs. 
  

 

5: Design a 2-to-1 multiplexer using bufif0 and bufif1 gates as shown below. 
  

 
 
The delay specification for gates b1 and b2 are as follows: 
  

  Min Typ Max 

Rise 1 2 3 

Fall 3 4 5 

Turnoff 5 6 7 
 
Apply stimulus and test the output values. 
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Chapter 6. Dataflow Modeling 
  
 
For small circuits, the gate-level modeling approach works very well because the number 
of gates is limited and the designer can instantiate and connect every gate individually. 
Also, gate-level modeling is very intuitive to a designer with a basic knowledge of digital 
logic design. However, in complex designs the number of gates is very large. Thus, 
designers can design more effectively if they concentrate on implementing the function at 
a level of abstraction higher than gate level. Dataflow modeling provides a powerful way 
to implement a design. Verilog allows a circuit to be designed in terms of the data flow 
between registers and how a design processes data rather than instantiation of individual 
gates. Later in this chapter, the benefits of dataflow modeling will become more apparent.
  
 
With gate densities on chips increasing rapidly, dataflow modeling has assumed great 
importance. No longer can companies devote engineering resources to handcrafting entire 
designs with gates. Currently, automated tools are used to create a gate-level circuit from 
a dataflow design description. This process is called logic synthesis. Dataflow modeling 
has become a popular design approach as logic synthesis tools have become 
sophisticated. This approach allows the designer to concentrate on optimizing the circuit 
in terms of data flow. For maximum flexibility in the design process, designers typically 
use a Verilog description style that combines the concepts of gate-level, data flow, and 
behavioral design. In the digital design community, the term RTL (Register Transfer 
Level) design is commonly used for a combination of dataflow modeling and behavioral 
modeling. 
  
 
Learning Objectives 
  

• Describe the continuous assignment (assign) statement, restrictions on the assign 
statement, and the implicit continuous assignment statement. 

 
• Explain assignment delay, implicit assignment delay, and net declaration delay for 

continuous assignment statements. 
 

• Define expressions, operators, and operands. 
•  

 
• List operator types for all possible operations?arithmetic, logical, relational, 

equality, bitwise, reduction, shift, concatenation, and conditional. 
 

• Use dataflow constructs to model practical digital circuits in Verilog. 
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6.1 Continuous Assignments 
  
 
A continuous assignment is the most basic statement in dataflow modeling, used to drive 
a value onto a net. This assignment replaces gates in the description of the circuit and 
describes the circuit at a higher level of abstraction. The assignment statement starts with 
the keyword assign. The syntax of an assign statement is as follows. 
  
continuous_assign ::= assign [ drive_strength ] [ delay3 ] 
                      list_of_net_assignments ; 
list_of_net_assignments ::= net_assignment { , net_assignment } 
net_assignment ::= net_lvalue = expression 
  
 
Notice that drive strength is optional and can be specified in terms of strength levels 
discussed in Section 3.2.1, Value Set. We will not discuss drive strength specification in 
this chapter. The default value for drive strength is strong1 and strong0. The delay value 
is also optional and can be used to specify delay on the assign statement. This is like 
specifying delays for gates. Delay specification is discussed in this chapter. Continuous 
assignments have the following characteristics: 
  
 

1. The left hand side of an assignment must always be a scalar or vector net or a 
concatenation of scalar and vector nets. It cannot be a scalar or vector register. 
Concatenations are discussed in Section 6.4.8, Concatenation Operator. 

 
2. Continuous assignments are always active. The assignment expression is 

evaluated as soon as one of the right-hand-side operands changes and the value is 
assigned to the left-hand-side net. 

 
3. The operands on the right-hand side can be registers or nets or function calls. 

Registers or nets can be scalars or vectors. 
 

4. Delay values can be specified for assignments in terms of time units. Delay values 
are used to control the time when a net is assigned the evaluated value. This 
feature is similar to specifying delays for gates. It is very useful in modeling 
timing behavior in real circuits. 

  
 
Examples of continuous assignments are shown below. Operators such as &, ^, |, {, } and 
+ used in the examples are explained in Section 6.4, Operator Types. At this point, 
concentrate on how the assign statements are specified. 
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Example 6-1 Examples of Continuous Assignment 
  
// Continuous assign. out is a net. i1 and i2 are nets. 
assign out = i1 & i2; 
 
// Continuous assign for vector nets. addr is a 16-bit vector net 
// addr1 and addr2 are 16-bit vector registers. 
assign addr[15:0] = addr1_bits[15:0] ^ addr2_bits[15:0]; 
 
// Concatenation. Left-hand side is a concatenation of a scalar 
// net and a vector net. 
assign {c_out, sum[3:0]} = a[3:0] + b[3:0] + c_in; 
  
 
We now discuss a shorthand method of placing a continuous assignment on a net. 
  
6.1.1 Implicit Continuous Assignment 
  
 
Instead of declaring a net and then writing a continuous assignment on the net, Verilog 
provides a shortcut by which a continuous assignment can be placed on a net when it is 
declared. There can be only one implicit declaration assignment per net because a net is 
declared only once. 
  
 
In the example below, an implicit continuous assignment is contrasted with a regular 
continuous assignment. 
  
//Regular continuous assignment 
wire out; 
assign out = in1 & in2; 
 
//Same effect is achieved by an implicit continuous assignment 
wire out = in1 & in2; 
  
6.1.2 Implicit Net Declaration 
  
 
If a signal name is used to the left of the continuous assignment, an implicit net 
declaration will be inferred for that signal name. If the net is connected to a module port, 
the width of the inferred net is equal to the width of the module port. 
  
// Continuous assign. out is a net. 
wire i1, i2; 
assign out = i1 & i2; //Note that out was not declared as a wire 
                      //but an implicit wire declaration for out 
                      //is done by the simulator 
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6.2 Delays 
  
 
Delay values control the time between the change in a right-hand-side operand and when 
the new value is assigned to the left-hand side. Three ways of specifying delays in 
continuous assignment statements are regular assignment delay, implicit continuous 
assignment delay, and net declaration delay. 
  
6.2.1 Regular Assignment Delay 
  
 
The first method is to assign a delay value in a continuous assignment statement. The 
delay value is specified after the keyword assign. Any change in values of in1 or in2 will 
result in a delay of 10 time units before recomputation of the expression in1 & in2, and 
the result will be assigned to out. If in1 or in2 changes value again before 10 time units 
when the result propagates to out, the values of in1 and in2 at the time of recomputation 
are considered. This property is called inertial delay. An input pulse that is shorter than 
the delay of the assignment statement does not propagate to the output. 
  
assign #10 out = in1 & in2; // Delay in a continuous assign 
  
 
The waveform in Figure 6-1 is generated by simulating the above assign statement. It 
shows the delay on signal out. Note the following change: 
  

1. When signals in1 and in2 go high at time 20, out goes to a high 10 time units later 
(time = 30). 

 
2. When in1 goes low at 60, out changes to low at 70. 

 
3. However, in1 changes to high at 80, but it goes down to low before 10 time units 

have elapsed. 
 
4. Hence, at the time of recomputation, 10 units after time 80, in1 is 0. Thus, out 

gets the value 0. A pulse of width less than the specified assignment delay is not 
propagated to the output. 
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Figure 6-1. Delays 
  

 
 
Inertial delays also apply to gate delays, discussed in Chapter 5, Gate-Level Modeling. 
  
6.2.2 Implicit Continuous Assignment Delay 
  
An equivalent method is to use an implicit continuous assignment to specify both a delay 
and an assignment on the net. 
  
//implicit continuous assignment delay 
wire #10 out = in1 & in2; 
 
//same as 
wire out; 
assign #10 out = in1 & in2; 
  
 
The declaration above has the same effect as defining a wire out and declaring a 
continuous assignment on out. 
  
6.2.3 Net Declaration Delay 
  
A delay can be specified on a net when it is declared without putting a continuous 
assignment on the net. If a delay is specified on a net out, then any value change applied 
to the net out is delayed accordingly. Net declaration delays can also be used in gate-level 
modeling. 
  
//Net Delays 
wire # 10 out; 
assign out = in1 & in2; 
 
//The above statement has the same effect as the following. 
wire out; 
assign #10 out = in1 & in2; 
  
 
Having discussed continuous assignments and delays, let us take a closer look at 
expressions, operators, and operands that are used inside continuous assignments.  
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6.3 Expressions, Operators, and Operands 
  
 
Dataflow modeling describes the design in terms of expressions instead of primitive 
gates. Expressions, operators, and operands form the basis of dataflow modeling. 
  
6.3.1 Expressions 
  
 
Expressions are constructs that combine operators and operands to produce a result. 
  
// Examples of expressions. Combines operands and operators 
a ^ b 
addr1[20:17] + addr2[20:17] 
in1 | in2 
  
6.3.2 Operands 
  
 
Operands can be any one of the data types defined in Section 3.2, Data Types. Some 
constructs will take only certain types of operands. Operands can be constants, integers, 
real numbers, nets, registers, times, bit-select (one bit of vector net or a vector register), 
part-select (selected bits of the vector net or register vector), and memories or function 
calls (functions are discussed later). 
  
integer count, final_count; 
final_count = count + 1;//count is an integer operand 
 
real a, b, c; 
c = a - b; //a and b are real operands 
 
reg [15:0] reg1, reg2; 
reg [3:0] reg_out; 
reg_out = reg1[3:0] ^ reg2[3:0];//reg1[3:0] and reg2[3:0] are 
                                 //part-select register operands 
 
reg ret_value; 
ret_value = calculate_parity(A, B);//calculate_parity is a 
                                 //function type operand 
  
6.3.3 Operators 
  
 
Operators act on the operands to produce desired results. Verilog provides various types 
of operators. Operator types are discussed in detail in Section 6.4, Operator Types. 
  
d1 && d2 // && is an operator on operands d1 and d2 
!a[0] // ! is an operator on operand a[0] 
B >> 1 // >> is an operator on operands B and 1  
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6.4 Operator Types 
  
 
Verilog provides many different operator types. Operators can be arithmetic, logical, 
relational, equality, bitwise, reduction, shift, concatenation, or conditional. Some of these 
operators are similar to the operators used in the C programming language. Each operator 
type is denoted by a symbol. Table 6-1 shows the complete listing of operator symbols 
classified by category. 
  
 
Table 6-1. Operator Types and Symbols 

Operator Type Operator Symbol Operation Performed Number of Operands

Arithmetic 

* 
  
/ 
  
+ 
  
- 
  
% 
  
** 

multiply 
  
divide 
  
add 
  
subtract 
  
modulus 
  
power (exponent) 

two 
  
two 
  
two 
  
two 
  
two 
  
two 

Logical 

! 
  
&& 
  
|| 

logical negation 
  
logical and 
  
logical or 

one 
  
two 
  
two 

Relational 

> 
  
< 
  
>= 
  
<= 

greater than 
  
less than 
  
greater than or equal 
  
less than or equal 

two 
  
two 
  
two 
  
two 

Equality 

== 
  
!= 
  
=== 
  
!== 

equality 
  
inequality 
  
case equality 
  
case inequality 

two 
  
two 
  
two 
  
two 
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Bitwise 

~ 
  
& 
  
| 
  
^ 
  
^~ or ~^ 

bitwise negation 
  
bitwise and 
  
bitwise or 
  
bitwise xor 
  
bitwise xnor 

one 
  
two 
  
two 
  
two 
  
two 

Reduction 

& 
  
~& 
  
| 
 
~| 
  
^ 
  
^~ or ~^ 

reduction and 
  
reduction nand 
  
reduction or 
  
reduction nor 
  
reduction xor 
  
reduction xnor 

one 
  
one 
  
one 
  
one 
  
one 
  
one 

Shift 

>> 
  
<< 
  
>>> 
  
<<< 

Right shift 
  
Left shift 
  
Arithmetic right shift 
  
Arithmetic left shift 

Two 
  
Two 
  
Two 
  
Two 

Concatenation { } Concatenation Any number 

Replication { { } } Replication Any number 

Conditional ?: Conditional Three 
 
Let us now discuss each operator type in detail. 
  
6.4.1 Arithmetic Operators 
  
 
There are two types of arithmetic operators: binary and unary. 
  
Binary operators 
  
 
Binary arithmetic operators are multiply (*), divide (/), add (+), subtract (-), power (**), 
and modulus (%). Binary operators take two operands. 
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A = 4'b0011; B = 4'b0100; // A and B are register vectors 
D = 6; E = 4; F=2// D and E are integers 
 
A * B // Multiply A and B. Evaluates to 4'b1100 
D / E // Divide D by E. Evaluates to 1. Truncates any fractional part. 
A + B // Add A and B. Evaluates to 4'b0111 
B - A // Subtract A from B. Evaluates to 4'b0001 
F = E ** F; //E to the power F, yields 16 
  
 
If any operand bit has a value x, then the result of the entire expression is x. This seems 
intuitive because if an operand value is not known precisely, the result should be an 
unknown. 
  
in1 = 4'b101x; 
in2 = 4'b1010; 
sum = in1 + in2; // sum will be evaluated to the value 4'bx 
  
 
Modulus operators produce the remainder from the division of two numbers. They 
operate similarly to the modulus operator in the C programming language. 
  
13 % 3 // Evaluates to 1 
16 % 4 // Evaluates to 0 
-7 % 2 // Evaluates to -1, takes sign of the first operand 
7 % -2 // Evaluates to +1, takes sign of the first operand 
  
Unary operators 
  
 
The operators + and - can also work as unary operators. They are used to specify the 
positive or negative sign of the operand. Unary + or ? operators have higher precedence 
than the binary + or ? operators. 
  
-4 // Negative 4 
+5 // Positive 5 
  
 
Negative numbers are represented as 2's complement internally in Verilog. It is advisable 
to use negative numbers only of the type integer or real in expressions. Designers should 
avoid negative numbers of the type <sss> '<base> <nnn> in expressions because they are 
converted to unsigned 2's complement numbers and hence yield unexpected results. 
  
//Advisable to use integer or real numbers 
-10 / 5// Evaluates to -2 
 
//Do not use numbers of type <sss> '<base> <nnn> 
-'d10 / 5// Is equivalent (2's complement of 10)/5 = (232 - 10)/5 
// where 32 is the default machine word width. 
// This evaluates to an incorrect and unexpected result 
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6.4.2 Logical Operators 
  
 
Logical operators are logical-and (&&), logical-or (||) and logical-not (!). Operators && 
and || are binary operators. Operator ! is a unary operator. Logical operators follow these 
conditions: 
  

1. Logical operators always evaluate to a 1-bit value, 0 (false), 1 (true), or x 
(ambiguous). 

 
2. If an operand is not equal to zero, it is equivalent to a logical 1 (true condition). If 

it is 01equal to zero, it is equivalent to a logical 0 (false condition). If any operand 
bit is x or z, it is equivalent to x (ambiguous condition) and is normally treated by 
simulators as a false condition. 

 
3. Logical operators take variables or expressions as operands. 

  
 
Use of parentheses to group logical operations is highly recommended to improve 
readability. Also, the user does not have to remember the precedence of operators. 
  
// Logical operations 
A = 3; B = 0; 
A && B // Evaluates to 0. Equivalent to (logical-1 && logical-0) 
A || B // Evaluates to 1. Equivalent to (logical-1 || logical-0) 
!A// Evaluates to 0. Equivalent to not(logical-1) 
!B// Evaluates to 1. Equivalent to not(logical-0) 
 
// Unknowns 
A = 2'b0x; B = 2'b10; 
A && B // Evaluates to x. Equivalent to (x && logical 1) 
 
// Expressions 
(a == 2) && (b == 3) // Evaluates to 1 if both a == 2 and b == 3 are 
true. 
 // Evaluates to 0 if either is false. 
  
6.4.3 Relational Operators 
  
 
Relational operators are greater-than (>), less-than (<), greater-than-or-equal-to (>=), and 
less-than-or-equal-to (<=). If relational operators are used in an expression, the 
expression returns a logical value of 1 if the expression is true and 0 if the expression is 
false. If there are any unknown or z bits in the operands, the expression takes a value x. 
These operators function exactly as the corresponding operators in the C programming 
language. 
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// A = 4, B = 3 
// X = 4'b1010, Y = 4'b1101, Z = 4'b1xxx 
 
A <= B // Evaluates to a logical 0 
A > B // Evaluates to a logical 1 
Y >= X // Evaluates to a logical 1 
Y < Z // Evaluates to an x 
  
6.4.4 Equality Operators 
  
 
Equality operators are logical equality (==), logical inequality (!=), case equality (===), 
and case inequality (!==). When used in an expression, equality operators return logical 
value 1 if true, 0 if false. These operators compare the two operands bit by bit, with zero 
filling if the operands are of unequal length. Table 6-2 lists the operators. 
  
 
Table 6-2. Equality Operators 
 

Expression Description Possible Logical 
Value 

a == b a equal to b, result unknown if x or z in a or b 0, 1, x 

a != b a not equal to b, result unknown if x or z in a or 
b 0, 1, x 

a === b a equal to b, including x and z 0, 1 

a !== b a not equal to b, including x and z 0, 1 
 
It is important to note the difference between the logical equality operators (==, !=) and 
case equality operators (===, !==). The logical equality operators (==, !=) will yield an x 
if either operand has x or z in its bits. However, the case equality operators ( ===, !== ) 
compare both operands bit by bit and compare all bits, including x and z. The result is 1 if 
the operands match exactly, including x and z bits. The result is 0 if the operands do not 
match exactly. Case equality operators never result in an x. 
  
// A = 4, B = 3 
// X = 4'b1010, Y = 4'b1101 
// Z = 4'b1xxz, M = 4'b1xxz, N = 4'b1xxx 
 
A == B // Results in logical 0 
X != Y // Results in logical 1 
X == Z // Results in x 
Z === M // Results in logical 1 (all bits match, including x and z) 
Z === N // Results in logical 0 (least significant bit does not match) 
M !== N // Results in logical 1 
  
 



 
 
 

 
 

108

6.4.5 Bitwise Operators 
  
 
Bitwise operators are negation (~), and(&), or (|), xor (^), xnor (^~, ~^). Bitwise operators 
perform a bit-by-bit operation on two operands. They take each bit in one operand and 
perform the operation with the corresponding bit in the other operand. If one operand is 
shorter than the other, it will be bit-extended with zeros to match the length of the longer 
operand. Logic tables for the bit-by-bit computation are shown in Table 6-3. A z is 
treated as an x in a bitwise operation. The exception is the unary negation operator (~), 
which takes only one operand and operates on the bits of the single operand. 
  

 
Table 6-3. Truth Tables for Bitwise Operators 

  

 
 
Examples of bitwise operators are shown below. 
  
// X = 4'b1010, Y = 4'b1101 
// Z = 4'b10x1 
 
~X     // Negation. Result is 4'b0101 
X & Y  // Bitwise and. Result is 4'b1000 
X | Y  // Bitwise or. Result is 4'b1111 
X ^ Y  // Bitwise xor. Result is 4'b0111 
X ^~ Y // Bitwise xnor. Result is 4'b1000 
X & Z  // Result is 4'b10x0 
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It is important to distinguish bitwise operators ~, &, and | from logical operators !, &&, ||. 
Logical operators always yield a logical value 0, 1, x, whereas bitwise operators yield a 
bit-by-bit value. Logical operators perform a logical operation, not a bit-by-bit operation.
  
// X = 4'b1010, Y = 4'b0000 
 
X | Y // bitwise operation. Result is 4'b1010 
X || Y // logical operation. Equivalent to 1 || 0. Result is 1. 
  
6.4.6 Reduction Operators 
  
 
Reduction operators are and (&), nand (~&), or (|), nor (~|), xor (^), and xnor (~^, ^~). 
Reduction operators take only one operand. Reduction operators perform a bitwise 
operation on a single vector operand and yield a 1-bit result. The logic tables for the 
operators are the same as shown in Section 6.4.5, Bitwise Operators. The difference is 
that bitwise operations are on bits from two different operands, whereas reduction 
operations are on the bits of the same operand. Reduction operators work bit by bit from 
right to left. Reduction nand, reduction nor, and reduction xnor are computed by inverting
the result of the reduction and, reduction or, and reduction xor, respectively. 
  
// X = 4'b1010 
 
&X //Equivalent to 1 & 0 & 1 & 0. Results in 1'b0 
|X//Equivalent to 1 | 0 | 1 | 0. Results in 1'b1 
^X//Equivalent to 1 ^ 0 ^ 1 ^ 0. Results in 1'b0 
//A reduction xor or xnor can be used for even or odd parity 
//generation of a vector. 
  
 
The use of a similar set of symbols for logical (!, &&, ||), bitwise (~, &, |, ^), and 
reduction operators (&, |, ^) is somewhat confusing initially. The difference lies in the 
number of operands each operator takes and also the value of results computed. 
  
6.4.7 Shift Operators 
  
 
Shift operators are right shift ( >>), left shift (<<), arithmetic right shift (>>>), and 
arithmetic left shift (<<<). Regular shift operators shift a vector operand to the right or 
the left by a specified number of bits. The operands are the vector and the number of bits 
to shift. When the bits are shifted, the vacant bit positions are filled with zeros. Shift 
operations do not wrap around. Arithmetic shift operators use the context of the 
expression to determine the value with which to fill the vacated bits. 
  
// X = 4'b1100 
 
Y = X >> 1; //Y is 4'b0110. Shift right 1 bit. 0 filled in MSB 
position. 
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Y = X << 1; //Y is 4'b1000. Shift left 1 bit. 0 filled in LSB position.
Y = X << 2; //Y is 4'b0000. Shift left 2 bits. 
 
integer a, b, c; //Signed data types 
a = 0; 
b = -10; // 00111...10110 binary 
c = a + (b >>> 3); //Results in -2 decimal, due to arithmetic shift 
  
 
Shift operators are useful because they allow the designer to model shift operations, shift-
and-add algorithms for multiplication, and other useful operations. 
  
6.4.8 Concatenation Operator 
  
 
The concatenation operator ( {, } ) provides a mechanism to append multiple operands. 
The operands must be sized. Unsized operands are not allowed because the size of each 
operand must be known for computation of the size of the result. 
  
 
Concatenations are expressed as operands within braces, with commas separating the 
operands. Operands can be scalar nets or registers, vector nets or registers, bit-select, 
part-select, or sized constants. 
  
// A = 1'b1, B = 2'b00, C = 2'b10, D = 3'b110 
 
Y = {B , C} // Result Y is 4'b0010 
Y = {A , B , C , D , 3'b001} // Result Y is 11'b10010110001 
Y = {A , B[0], C[1]} // Result Y is 3'b101 
  
6.4.9 Replication Operator 
  
 
Repetitive concatenation of the same number can be expressed by using a replication 
constant. A replication constant specifies how many times to replicate the number inside 
the brackets ( { } ). 
  
reg A; 
reg [1:0] B, C; 
reg [2:0] D; 
A = 1'b1; B = 2'b00; C = 2'b10; D = 3'b110; 
 
Y = { 4{A} } // Result Y is 4'b1111 
Y = { 4{A} , 2{B} } // Result Y is 8'b11110000 
Y = { 4{A} , 2{B} , C } // Result Y is 8'b1111000010 
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6.4.10 Conditional Operator 
  
The conditional operator(?:) takes three operands. 
 
Usage: condition_expr ? true_expr : false_expr ; 
  
The condition expression (condition_expr) is first evaluated. If the result is true (logical 
1), then the true_expr is evaluated. If the result is false (logical 0), then the false_expr is 
evaluated. If the result is x (ambiguous), then both true_expr and false_expr are evaluated 
and their results are compared, bit by bit, to return for each bit position an x if the bits are 
different and the value of the bits if they are the same. 
  
 
The action of a conditional operator is similar to a multiplexer. Alternately, it can be 
compared to the if-else expression. 
  

 
 
Conditional operators are frequently used in dataflow modeling to model conditional 
assignments. The conditional expression acts as a switching control. 
  
//model functionality of a tristate buffer 
assign addr_bus = drive_enable ? addr_out : 36'bz; 
 
//model functionality of a 2-to-1 mux 
assign out = control ? in1 : in0; 
  
 
Conditional operations can be nested. Each true_expr or false_expr can itself be a 
conditional operation. In the example that follows, convince yourself that (A==3) and 
control are the two select signals of 4-to-1 multiplexer with n, m, y, x as the inputs and 
out as the output signal. 
  
assign out = (A == 3) ? ( control ? x : y ): ( control ? m : n) ; 
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6.4.11 Operator Precedence 
  
 
Having discussed the operators, it is now important to discuss operator precedence. If no 
parentheses are used to separate parts of expressions, Verilog enforces the following 
precedence. Operators listed in Table 6-4 are in order from highest precedence to lowest 
precedence. It is recommended that parentheses be used to separate expressions except in 
case of unary operators or when there is no ambiguity. 
  
 
Table 6-4. Operator Precedence 
 

Operators Operator Symbols Precedence 

Unary + - ! ~ Highest precedence 

Multiply, Divide, Modulus * / %   

Add, Subtract + -   

Shift << >>   

Relational < <= > >=   

Equality == != === !==   

Reduction 

&, ~& 
  
^ ^~ 
  
|, ~| 

  

Logical 
&& 
  
|| 

  

Conditional ?: Lowest precedence 
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6.5 Examples 
  
 
A design can be represented in terms of gates, data flow, or a behavioral description. In 
this section, we consider the 4-to-1 multiplexer and 4-bit full adder described in Section 
5.1.4, Examples. Previously, these designs were directly translated from the logic 
diagram into a gate-level Verilog description. Here, we describe the same designs in 
terms of data flow. We also discuss two additional examples: a 4-bit full adder using 
carry lookahead and a 4-bit counter using negative edge-triggered D-flipflops. 
  
6.5.1 4-to-1 Multiplexer 
  
 
Gate-level modeling of a 4-to-1 multiplexer is discussed in Section 5.1.4, Examples. The 
logic diagram for the multiplexer is given in Figure 5-5 and the gate-level Verilog 
description is shown in Example 5-5. We describe the multiplexer, using dataflow 
statements. Compare it with the gate-level description. We show two methods to model 
the multiplexer by using dataflow statements. 
  
Method 1: logic equation 
  
 
We can use assignment statements instead of gates to model the logic equations of the 
multiplexer (see Example 6-2). Notice that everything is same as the gate-level Verilog 
description except that computation of out is done by specifying one logic equation by 
using operators instead of individual gate instantiations. I/O ports remain the same. This 
is important so that the interface with the environment does not change. Only the 
internals of the module change. Notice how concise the description is compared to the 
gate-level description. 
  
Example 6-2 4-to-1 Multiplexer, Using Logic Equations 
  
// Module 4-to-1 multiplexer using data flow. logic equation 
// Compare to gate-level model 
module mux4_to_1 (out, i0, i1, i2, i3, s1, s0); 
 
// Port declarations from the I/O diagram 
output out; 
input i0, i1, i2, i3; 
input s1, s0; 
 
//Logic equation for out 
assign out =    (~s1 & ~s0 & i0)| 
                (~s1 & s0 & i1) | 
                (s1 & ~s0 & i2) | 
                (s1 & s0 & i3) ; 
 
endmodule 
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Method 2: conditional operator 
  
 
There is a more concise way to specify the 4-to-1 multiplexers. In Section 6.4.10, 
Conditional Operator, we described how a conditional statement corresponds to a 
multiplexer operation. We will use this operator to write a 4-to-1 multiplexer. Convince 
yourself that this description (Example 6-3) correctly models a multiplexer. 
  
Example 6-3 4-to-1 Multiplexer, Using Conditional Operators 
  
// Module 4-to-1 multiplexer using data flow. Conditional operator. 
// Compare to gate-level model 
module multiplexer4_to_1 (out, i0, i1, i2, i3, s1, s0); 
 
// Port declarations from the I/O diagram 
output out; 
input i0, i1, i2, i3; 
input s1, s0; 
 
// Use nested conditional operator 
assign out = s1 ? ( s0 ? i3 : i2) : (s0 ? i1 : i0) ; 
 
endmodule 
  
 
In the simulation of the multiplexer, the gate-level module in Example 5-5 on page 72 
can be substituted with the dataflow multiplexer modules described above. The stimulus 
module will not change. The simulation results will be identical. By encapsulating 
functionality inside a module, we can replace the gate-level module with a dataflow 
module without affecting the other modules in the simulation. This is a very powerful 
feature of Verilog. 
  
6.5.2 4-bit Full Adder 
  
 
The 4-bit full adder in Section 5.1.4, Examples, was designed by using gates; the logic 
diagram is shown in Figure 5-7 and Figure 5-6. In this section, we write the dataflow 
description for the 4-bit adder. Compare it with the gate-level description in Figure 5-7. 
In gates, we had to first describe a 1-bit full adder. Then we built a 4-bit full ripple carry 
adder. We again illustrate two methods to describe a 4-bit full adder by means of 
dataflow statements. 
  
Method 1: dataflow operators 
  
 
A concise description of the adder (Example 6-4) is defined with the + and { } operators.
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Example 6-4 4-bit Full Adder, Using Dataflow Operators 
  
// Define a 4-bit full adder by using dataflow statements. 
module fulladd4(sum, c_out, a, b, c_in); 
 
// I/O port declarations 
output [3:0] sum; 
output c_out; 
input[3:0] a, b; 
input c_in; 
 
// Specify the function of a full adder 
assign {c_out, sum} = a + b + c_in; 
 
endmodule 
  
 
If we substitute the gate-level 4-bit full adder with the dataflow 4-bit full adder, the rest 
of the modules will not change. The simulation results will be identical. 
  
Method 2: full adder with carry lookahead 
  
 
In ripple carry adders, the carry must propagate through the gate levels before the sum is 
available at the output terminals. An n-bit ripple carry adder will have 2n gate levels. The 
propagation time can be a limiting factor on the speed of the circuit. One of the most 
popular methods to reduce delay is to use a carry lookahead mechanism. Logic equations 
for implementing the carry lookahead mechanism can be found in any logic design book.
  
 
The propagation delay is reduced to four gate levels, irrespective of the number of bits in 
the adder. The Verilog description for a carry lookahead adder is shown in Example 6-5. 
This module can be substituted in place of the full adder modules described before 
without changing any other component of the simulation. The simulation results will be 
unchanged. 
  
Example 6-5 4-bit Full Adder with Carry Lookahead 
  
module fulladd4(sum, c_out, a, b, c_in); 
// Inputs and outputs 
output [3:0] sum; 
output c_out; 
input [3:0] a,b; 
input c_in; 
 
// Internal wires 
wire p0,g0, p1,g1, p2,g2, p3,g3; 
wire c4, c3, c2, c1; 
 
// compute the p for each stage 
assign p0 = a[0] ^ b[0], 
       p1 = a[1] ^ b[1], 
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       p2 = a[2] ^ b[2], 
       p3 = a[3] ^ b[3]; 
 
// compute the g for each stage 
assign g0 = a[0] & b[0], 
       g1 = a[1] & b[1], 
       g2 = a[2] & b[2], 
       g3 = a[3] & b[3]; 
 
// compute the carry for each stage 
// Note that c_in is equivalent c0 in the arithmetic equation for 
// carry lookahead computation 
assign c1 = g0 | (p0 & c_in), 
       c2 = g1 | (p1 & g0) | (p1 & p0 & c_in), 
       c3 = g2 | (p2 & g1) | (p2 & p1 & g0) | (p2 & p1 & p0 & c_in), 
       c4 = g3 | (p3 & g2) | (p3 & p2 & g1) | (p3 & p2 & p1 & g0) | 
                                (p3 & p2 & p1 & p0 & c_in); 
// Compute Sum 
assign sum[0] = p0 ^ c_in, 
       sum[1] = p1 ^ c1, 
       sum[2] = p2 ^ c2, 
       sum[3] = p3 ^ c3; 
 
// Assign carry output 
assign c_out = c4; 
 
endmodule 
  
6.5.3 Ripple Counter 
  
 
We now discuss an additional example that was not discussed in the gate-level modeling 
chapter. We design a 4-bit ripple counter by using negative edge-triggered flipflops. This 
example was discussed at a very abstract level in Chapter 2, Hierarchical Modeling 
Concepts. We design it using Verilog dataflow statements and test it with a stimulus 
module. The diagrams for the 4-bit ripple carry counter modules are shown below. 
  
 
Figure 6-2 shows the counter being built with four T-flipflops. 
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Figure 6-2. 4-bit Ripple Carry Counter 

  

 
 
Figure 6-3 shows that the T-flipflop is built with one D-flipflop and an inverter gate. 
  

 
Figure 6-3. T-flipflop 

  

 
 
Finally, Figure 6-4 shows the D-flipflop constructed from basic logic gates. 
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Figure 6-4. Negative Edge-Triggered D-flipflop with Clear 
  

 
 
Given the above diagrams, we write the corresponding Verilog, using dataflow 
statements in a top-down fashion. First we design the module counter. The code is shown 
in Figure 6-6. The code contains instantiation of four T_FF modules. 
  
Example 6-6 Verilog Code for Ripple Counter 
  
// Ripple counter 
module counter(Q , clock, clear); 
 
// I/O ports 
output [3:0] Q; 
input clock, clear; 
 
// Instantiate the T flipflops 
T_FF tff0(Q[0], clock, clear); 
T_FF tff1(Q[1], Q[0], clear); 
T_FF tff2(Q[2], Q[1], clear); 
T_FF tff3(Q[3], Q[2], clear); 
 
endmodule 
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Figure 6-6. 4-bit Synchronous Counter with clear and count_enable 
  

 
 
Next, we write the Verilog description for T_FF (Example 6-7). Notice that instead of the 
not gate, a dataflow operator ~ negates the signal q, which is fed back. 
  
Example 6-7 Verilog Code for T-flipflop 
  
// Edge-triggered T-flipflop. Toggles every clock 
// cycle. 
module T_FF(q, clk, clear); 
 
// I/O ports 
output q; 
input clk, clear; 
 
// Instantiate the edge-triggered DFF 
// Complement of output q is fed back. 
// Notice qbar not needed. Unconnected port. 
edge_dff ff1(q, ,~q, clk, clear); 
 
endmodule 
  
Finally, we define the lowest level module D_FF (edge_dff ), using dataflow statements 
(Example 6-8). The dataflow statements correspond to the logic diagram shown in Figure 
6-4. The nets in the logic diagram correspond exactly to the declared nets. 
  
Example 6-8 Verilog Code for Edge-Triggered D-flipflop 
  
// Edge-triggered D flipflop 
module edge_dff(q, qbar, d, clk, clear); 
 
// Inputs and outputs 
output q,qbar; 
input d, clk, clear; 
 
// Internal variables 
wire s, sbar, r, rbar,cbar; 
 
// dataflow statements 
//Create a complement of signal clear 
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assign cbar = ~clear; 
 
// Input latches; A latch is level sensitive. An edge-sensitive 
// flip-flop is implemented by using 3 SR latches. 
assign  sbar = ~(rbar & s), 
        s = ~(sbar & cbar & ~clk), 
        r = ~(rbar & ~clk & s), 
        rbar = ~(r & cbar & d); 
 
// Output latch 
assign  q = ~(s & qbar), 
        qbar = ~(q & r & cbar); 
 
endmodule 
  
The design block is now ready. Now we must instantiate the design block inside the 
stimulus block to test the design. The stimulus block is shown in Example 6-9. The clock 
has a time period of 20 with a 50% duty cycle. 
  
Example 6-9 Stimulus Module for Ripple Counter 
  
// Top level stimulus module 
module stimulus; 
 
// Declare variables for stimulating input 
reg CLOCK, CLEAR; 
wire [3:0] Q; 
 
initial 
        $monitor($time, " Count Q = %b Clear= %b",  Q[3:0],CLEAR); 
 
// Instantiate the design block counter 
counter c1(Q, CLOCK, CLEAR); 
 
// Stimulate the Clear Signal 
initial 
begin 
        CLEAR = 1'b1; 
        #34 CLEAR = 1'b0; 
        #200 CLEAR = 1'b1; 
        #50 CLEAR = 1'b0; 
end 
// Set up the clock to toggle every 10 time units 
initial 
begin 
        CLOCK = 1'b0; 
        forever #10 CLOCK = ~CLOCK; 
end 
 
// Finish the simulation at time 400 
initial 
begin 
        #400 $finish; 
end 
 
endmodule 
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The output of the simulation is shown below. Note that the clear signal resets the count to 
zero. 
  
  0 Count Q = 0000 Clear= 1 
 34 Count Q = 0000 Clear= 0 
 40 Count Q = 0001 Clear= 0 
 60 Count Q = 0010 Clear= 0 
 80 Count Q = 0011 Clear= 0 
100 Count Q = 0100 Clear= 0 
120 Count Q = 0101 Clear= 0 
140 Count Q = 0110 Clear= 0 
160 Count Q = 0111 Clear= 0 
180 Count Q = 1000 Clear= 0 
200 Count Q = 1001 Clear= 0 
220 Count Q = 1010 Clear= 0 
234 Count Q = 0000 Clear= 1 
284 Count Q = 0000 Clear= 0 
300 Count Q = 0001 Clear= 0 
320 Count Q = 0010 Clear= 0 
340 Count Q = 0011 Clear= 0 
360 Count Q = 0100 Clear= 0 
380 Count Q = 0101 Clear= 0 
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6.6 Summary 
  
 

• Continuous assignment is one of the main constructs used in dataflow modeling. 
A continuous assignment is always active and the assignment expression is 
evaluated as soon as one of the right-hand-side variables changes. The left-hand 
side of a continuous assignment must be a net. Any logic function can be realized 
with continuous assignments. 

 
• Delay values control the time between the change in a right-hand-side variable 

and when the new value is assigned to the left-hand side. Delays on a net can be 
defined in the assign statement, implicit continuous assignment, or net 
declaration. 

 
• Assignment statements contain expressions, operators, and operands. 

 
• The operator types are arithmetic, logical, relational, equality, bitwise, reduction, 

shift, concatenation, replication, and conditional. Unary operators require one 
operand, binary operators require two operands, and ternary require three 
operands. The concatenation operator can take any number of operands. 

 
• The conditional operator behaves like a multiplexer in hardware or like the if-

then-else statement in programming languages. 
 

• Dataflow description of a circuit is more concise than a gate-level description. 
The 4-to-1 multiplexer and the 4-bit full adder discussed in the gate-level 
modeling chapter can also be designed by use of dataflow statements. Two 
dataflow implementations for both circuits were discussed. A 4-bit ripple counter 
using negative edge-triggered D-flipflops was designed. 
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6.7 Exercises 
  
 

1: A full subtractor has three 1-bit inputs x, y, and z (previous borrow) and two 1-
bit outputs D (difference) and B (borrow). The logic equations for D and B are 
as follows: 
  
D = x'.y'.z + x'.y.z' + x.y'.z' + x.y.z 
 
B = x'.y + x'.z +y.z 
  
Write the full Verilog description for the full subtractor module, including I/O 
ports (Remember that + in logic equations corresponds to a logical or operator 
(||) in dataflow). Instantiate the subtractor inside a stimulus block and test all 
eight possible combinations of x, y, and z given in the following truth table. 
  
 
x y z B D 

0 0 0 0 0 

0 0 1 1 1 

0 1 0 1 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 0 0 

1 1 0 0 0 

1 1 1 1 1 
 

2: A magnitude comparator checks if one number is greater than or equal to or less 
than another number. A 4-bit magnitude comparator takes two 4-bit numbers, A 
and B, as input. We write the bits in A and B as follows. The leftmost bit is the 
most significant bit. 
  
A = A(3) A(2) A(1) A(0) 
 
B = B(3) B(2) B(1) B(0) 
  
The magnitude can be compared by comparing the numbers bit by bit, starting 
with the most significant bit. If any bit mismatches, the number with bit 0 is the 
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lower number. To realize this functionality in logic equations, let us define an 
intermediate variable. Notice that the function below is an xnor function. 
  
x(i) = A(i).B(i) + A(i)'.B(i)' 
  
The three outputs of the magnitude comparator are A_gt_B, A_lt_B, A_eq_B. 
They are defined with the following logic equations: 
  
A_gt_B = A(3).B(3)' + x(3).A(2).B(2)' + x(3).x(2).A(1).B(1)' + 
x(3).x(2).x(1).A(0).B(0)' 
  
A_lt_B = A(3)'.B(3) + x(3).A(2)'.B(2) + x(3).x(2).A(1)'.B(1) + 
x(3).x(2).x(1).A(0)'.B(0) 
  
A_eq_B = x(3).x(2).x(1).x(0) 
  
Write the Verilog description of the module magnitude_comparator. Instantiate 
the magnitude comparator inside the stimulus module and try out a few 
combinations of A and B. 

3: A synchronous counter can be designed by using master-slave JK flipflops. 
Design a 4-bit synchronous counter. Circuit diagrams for the synchronous 
counter and the JK flipflop are given below. The clear signal is active low. Data 
gets latched on the positive edge of clock, and the output of the flipflop appears 
on the negative edge of clock. Counting is disabled when count_enable signal is 
low. Write the dataflow description for the synchronous counter. Write a 
stimulus file that exercises clear and count_enable. Display the output count 
Q[3:0]. 
 Figure 6-5. Master-Slave JK-flipflop 

  

 

 
 

 
 
 



 
 
 

 
 

125

  

Chapter 7. Behavioral Modeling 
  
 
With the increasing complexity of digital design, it has become vitally important to make 
wise design decisions early in a project. Designers need to be able to evaluate the trade-
offs of various architectures and algorithms before they decide on the optimum 
architecture and algorithm to implement in hardware. Thus, architectural evaluation takes 
place at an algorithmic level where the designers do not necessarily think in terms of 
logic gates or data flow but in terms of the algorithm they wish to implement in 
hardware. They are more concerned about the behavior of the algorithm and its 
performance. Only after the high-level architecture and algorithm are finalized, do 
designers start focusing on building the digital circuit to implement the algorithm. 
  
 
Verilog provides designers the ability to describe design functionality in an algorithmic 
manner. In other words, the designer describes the behavior of the circuit. Thus, 
behavioral modeling represents the circuit at a very high level of abstraction. Design at 
this level resembles C programming more than it resembles digital circuit design. 
Behavioral Verilog constructs are similar to C language constructs in many ways. Verilog 
is rich in behavioral constructs that provide the designer with a great amount of 
flexibility. 
  
 
Learning Objectives 
  

• Explain the significance of structured procedures always and initial in behavioral 
modeling. 

 
• Define blocking and nonblocking procedural assignments. 

 
• Understand delay-based timing control mechanism in behavioral modeling. Use 

regular delays, intra-assignment delays, and zero delays. 
 

• Describe event-based timing control mechanism in behavioral modeling. Use 
regular event control, named event control, and event OR control. 

 
• Use level-sensitive timing control mechanism in behavioral modeling. 

 
• Explain conditional statements using if and else. 

 
• Describe multiway branching, using case, casex, and casez statements. 

 
• Understand looping statements such as while, for, repeat, and forever. 
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• Define sequential and parallel blocks. 
 

• Understand naming of blocks and disabling of named blocks. 
 

• Use behavioral modeling statements in practical examples. 
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7.1 Structured Procedures 
  
 
There are two structured procedure statements in Verilog: always and initial. These 
statements are the two most basic statements in behavioral modeling. All other behavioral 
statements can appear only inside these structured procedure statements. 
  
 
Verilog is a concurrent programming language unlike the C programming language, 
which is sequential in nature. Activity flows in Verilog run in parallel rather than in 
sequence. Each always and initial statement represents a separate activity flow in Verilog. 
Each activity flow starts at simulation time 0. The statements always and initial cannot be 
nested. The fundamental difference between the two statements is explained in the 
following sections. 
  
7.1.1 initial Statement 
  
 
All statements inside an initial statement constitute an initial block. An initial block starts 
at time 0, executes exactly once during a simulation, and then does not execute again. If 
there are multiple initial blocks, each block starts to execute concurrently at time 0. Each 
block finishes execution independently of other blocks. Multiple behavioral statements 
must be grouped, typically using the keywords begin and end. If there is only one 
behavioral statement, grouping is not necessary. This is similar to the begin-end blocks in 
Pascal programming language or the { } grouping in the C programming language. 
Example 7-1 illustrates the use of the initial statement. 
  
Example 7-1 initial Statement 
  
module stimulus; 
 
reg x,y, a,b, m; 
 
initial 
    m = 1'b0; //single statement; does not need to be grouped 
 
initial 
begin 
    #5 a = 1'b1; //multiple statements; need to be grouped 
    #25 b = 1'b0; 
end 
 
initial 
begin 
    #10 x = 1'b0; 
    #25 y = 1'b1; 
end 
 
initial 
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    #50 $finish; 
 
endmodule 
  
 
In the above example, the three initial statements start to execute in parallel at time 0. If a 
delay #<delay> is seen before a statement, the statement is executed <delay> time units 
after the current simulation time. Thus, the execution sequence of the statements inside 
the initial blocks will be as follows. 
  
time            statement executed 
0               m = 1'b0; 
5               a = 1'b1; 
10              x = 1'b0; 
30              b = 1'b0; 
35              y = 1'b1; 
50              $finish; 
  
 
The initial blocks are typically used for initialization, monitoring, waveforms and other 
processes that must be executed only once during the entire simulation run. The 
following subsections discussion how to initialize values using alternate shorthand 
syntax. The use of such shorthand syntax has the same effect as an initial block combined 
with a variable declaration. 
  
Combined Variable Declaration and Initialization 
  
 
Variables can be initialized when they are declared. Example 7-2 shows such a 
declaration. 
  
Example 7-2 Initial Value Assignment 
  
//The clock variable is defined first 
reg clock; 
//The value of clock is set to 0 
initial clock = 0; 
 
//Instead of the above method, clock variable 
//can be initialized at the time of declaration 
//This is allowed only for variables declared 
//at module level. 
reg clock = 0; 
  
Combined Port/Data Declaration and Initialization 
  
 
The combined port/data declaration can also be combined with an initialization. Example 
7-3 shows such a declaration. 
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Example 7-3 Combined Port/Data Declaration and Variable Initialization 
  
module adder (sum, co, a, b, ci); 
output reg [7:0] sum = 0; //Initialize 8 bit output sum 
output reg       co  = 0; //Initialize 1 bit output co 
input      [7:0] a, b; 
input            ci; 
 
-- 
-- 
endmodule 
  
Combined ANSI C Style Port Declaration and Initialization 
  
 
ANSI C style port declaration can also be combined with an initialization. Example 7-4 
shows such a declaration. 
  
Example 7-4 Combined ANSI C Port Declaration and Variable Initialization 
  
module adder (output reg [7:0] sum = 0, //Initialize 8 bit output 
              output reg       co  = 0, //Initialize 1 bit output co 
              input      [7:0] a, b, 
              input            ci 
              ); 
-- 
-- 
endmodule 
  
7.1.2 always Statement 
  
 
All behavioral statements inside an always statement constitute an always block. The 
always statement starts at time 0 and executes the statements in the always block 
continuously in a looping fashion. This statement is used to model a block of activity that 
is repeated continuously in a digital circuit. An example is a clock generator module that 
toggles the clock signal every half cycle. In real circuits, the clock generator is active 
from time 0 to as long as the circuit is powered on. Example 7-5 illustrates one method to 
model a clock generator in Verilog. 
  
Example 7-5 always Statement 
  
module clock_gen (output reg clock); 
 
//Initialize clock at time zero 
initial 
        clock = 1'b0; 
 
//Toggle clock every half-cycle (time period = 20) 
always 
        #10 clock = ~clock; 
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initial 
        #1000 $finish; 
 
endmodule 
  
 
In Example 7-5, the always statement starts at time 0 and executes the statement clock = 
~clock every 10 time units. Notice that the initialization of clock has to be done inside a 
separate initial statement. If we put the initialization of clock inside the always block, 
clock will be initialized every time the always is entered. Also, the simulation must be 
halted inside an initial statement. If there is no $stop or $finish statement to halt the 
simulation, the clock generator will run forever. 
  
 
C programmers might draw an analogy between the always block and an infinite loop. 
But hardware designers tend to view it as a continuously repeated activity in a digital 
circuit starting from power on. The activity is stopped only by power off ($finish) or by 
an interrupt ($stop). 
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7.2 Procedural Assignments 
  
 
Procedural assignments update values of reg, integer, real, or time variables. The value 
placed on a variable will remain unchanged until another procedural assignment updates 
the variable with a different value. These are unlike continuous assignments discussed in 
Chapter 6, Dataflow Modeling, where one assignment statement can cause the value of 
the right-hand-side expression to be continuously placed onto the left-hand-side net. The 
syntax for the simplest form of procedural assignment is shown below. 
  
assignment ::= variable_lvalue = [ delay_or_event_control ] 
           expression 
  
 
The left-hand side of a procedural assignment <lvalue> can be one of the following: 
  

• A reg, integer, real, or time register variable or a memory element 
 
• A bit select of these variables (e.g., addr[0]) 

 
• A part select of these variables (e.g., addr[31:16]) 

 
• A concatenation of any of the above 

  
The right-hand side can be any expression that evaluates to a value. In behavioral 
modeling, all operators listed in Table 6-1 on page 96 can be used in behavioral 
expressions. 
  
 
There are two types of procedural assignment statements: blocking and nonblocking. 
  
7.2.1 Blocking Assignments 
  
 
Blocking assignment statements are executed in the order they are specified in a 
sequential block. A blocking assignment will not block execution of statements that 
follow in a parallel block. Both parallel and sequential blocks are discussed in Section 
7.7, Sequential and Parallel Blocks. The = operator is used to specify blocking 
assignments. 
  
Example 7-6 Blocking Statements 
  
reg x, y, z; 
reg [15:0] reg_a, reg_b; 
integer count; 
 



 
 
 

 
 

132

 
//All behavioral statements must be inside an initial or always block 
initial 
begin 
        x = 0; y = 1; z = 1; //Scalar assignments 
        count = 0; //Assignment to integer variables 
        reg_a = 16'b0; reg_b = reg_a; //initialize vectors 
 
        #15 reg_a[2] = 1'b1; //Bit select assignment with delay 
        #10 reg_b[15:13] = {x, y, z} //Assign result of concatenation 
to 
                                     // part select of a vector 
        count = count + 1; //Assignment to an integer (increment) 
end 
  
 
In Example 7-6, the statement y = 1 is executed only after x = 0 is executed. The 
behavior in a particular block is sequential in a begin-end block if blocking statements are 
used, because the statements can execute only in sequence. The statement count = count 
+ 1 is executed last. The simulation times at which the statements are executed are as 
follows: 
  

• All statements x = 0 through reg_b = reg_a are executed at time 0 
 

• Statement reg_a[2] = 0 at time = 15 
 

• Statement reg_b[15:13] = {x, y, z} at time = 25 
 

• Statement count = count + 1 at time = 25 
 

• Since there is a delay of 15 and 10 in the preceding statements, count = count + 1 
will be executed at time = 25 units 

  
 
Note that for procedural assignments to registers, if the right-hand side has more bits than 
the register variable, the right-hand side is truncated to match the width of the register 
variable. The least significant bits are selected and the most significant bits are discarded. 
If the right-hand side has fewer bits, zeros are filled in the most significant bits of the 
register variable. 
  
7.2.2 Nonblocking Assignments 
  
 
Nonblocking assignments allow scheduling of assignments without blocking execution of 
the statements that follow in a sequential block. A <= operator is used to specify 
nonblocking assignments. Note that this operator has the same symbol as a relational 
operator, less_than_equal_to. The operator <= is interpreted as a relational operator in an 
expression and as an assignment operator in the context of a nonblocking assignment. To 
illustrate the behavior of nonblocking statements and its difference from blocking 
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statements, let us consider Example 7-7, where we convert some blocking assignments to 
nonblocking assignments, and observe the behavior. 
  
Example 7-7 Nonblocking Assignments 
  
reg x, y, z; 
reg [15:0] reg_a, reg_b; 
integer count; 
 
 
//All behavioral statements must be inside an initial or always block 
initial 
begin 
        x = 0; y = 1; z = 1; //Scalar assignments 
        count = 0; //Assignment to integer variables 
        reg_a = 16'b0; reg_b = reg_a; //Initialize vectors 
 
        reg_a[2] <= #15 1'b1; //Bit select assignment with delay 
       reg_b[15:13] <= #10 {x, y, z}; //Assign result of concatenation 
                                     //to part select of a vector 
        count <= count + 1; //Assignment to an integer (increment) 
end 
  
In this example, the statements x = 0 through reg_b = reg_a are executed sequentially at 
time 0. Then the three nonblocking assignments are processed at the same simulation 
time. 
  

1. reg_a[2] = 0 is scheduled to execute after 15 units (i.e., time = 15) 
 

2. reg_b[15:13] = {x, y, z} is scheduled to execute after 10 time units (i.e.,  
time = 10) 

 
3. count = count + 1 is scheduled to be executed without any delay (i.e., time = 0) 

  
 
Thus, the simulator schedules a nonblocking assignment statement to execute and 
continues to the next statement in the block without waiting for the nonblocking 
statement to complete execution. Typically, nonblocking assignment statements are 
executed last in the time step in which they are scheduled, that is, after all the blocking 
assignments in that time step are executed. 
  
 
In the example above, we mixed blocking and nonblocking assignments to illustrate their 
behavior. However, it is recommended that blocking and nonblocking assignments not be 
mixed in the same always block. 
  
Application of nonblocking assignments 
  
Having described the behavior of nonblocking assignments, it is important to understand 
why they are used in digital design. They are used as a method to model several 
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concurrent data transfers that take place after a common event. Consider the following 
example where three concurrent data transfers take place at the positive edge of clock. 
  
always @(posedge clock) 
begin 
    reg1 <= #1 in1; 
    reg2 <= @(negedge clock) in2 ^ in3; 
    reg3 <= #1 reg1; //The old value of reg1 
end 
  
 
At each positive edge of clock, the following sequence takes place for the nonblocking 
assignments. 
  

1. A read operation is performed on each right-hand-side variable, in1, in2, in3, and 
reg1, at the positive edge of clock. The right-hand-side expressions are evaluated, 
and the results are stored internally in the simulator. 

 
2. The write operations to the left-hand-side variables are scheduled to be executed 

at the time specified by the intra-assignment delay in each assignment, that is, 
schedule "write" to reg1 after 1 time unit, to reg2 at the next negative edge of 
clock, and to reg3 after 1 time unit. 

 
3. The write operations are executed at the scheduled time steps. The order in which 

the write operations are executed is not important because the internally stored 
right-hand-side expression values are used to assign to the left-hand-side values. 
For example, note that reg3 is assigned the old value of reg1 that was stored after 
the read operation, even if the write operation wrote a new value to reg1 before 
the write operation to reg3 was executed. 

  
 
Thus, the final values of reg1, reg2, and reg3 are not dependent on the order in which the 
assignments are processed. 
  
 
To understand the read and write operations further, consider Example 7-8, which is 
intended to swap the values of registers a and b at each positive edge of clock, using two 
concurrent always blocks. 
  
Example 7-8 Nonblocking Statements to Eliminate Race Conditions 
  
//Illustration 1: Two concurrent always blocks with blocking 
//statements 
always @(posedge clock) 
           a = b; 
 
always @(posedge clock) 
           b = a; 
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//Illustration 2: Two concurrent always blocks with nonblocking 
//statements 
always @(posedge clock) 
           a <= b; 
 
always @(posedge clock) 
           b <= a; 
  
 
In Example 7-8, in Illustration 1, there is a race condition when blocking statements are 
used. Either a = b would be executed before b = a, or vice versa, depending on the 
simulator implementation. Thus, values of registers a and b will not be swapped. Instead, 
both registers will get the same value (previous value of a or b), based on the Verilog 
simulator implementation. 
  
However, nonblocking statements used in Illustration 2 eliminate the race condition. At 
the positive edge of clock, the values of all right-hand-side variables are "read," and the 
right-hand-side expressions are evaluated and stored in temporary variables. During the 
write operation, the values stored in the temporary variables are assigned to the left-hand-
side variables. Separating the read and write operations ensures that the values of 
registers a and b are swapped correctly, regardless of the order in which the write 
operations are performed. Example 7-9 shows how nonblocking assignments shown in 
Illustration 2 could be emulated using blocking assignments. 
  
Example 7-9 Implementing Nonblocking Assignments using Blocking Assignments 
  
//Emulate the behavior of nonblocking assignments by 
//using temporary variables and blocking assignments 
always @(posedge clock) 
begin 
   //Read operation 
   //store values of right-hand-side expressions in temporary variables
    temp_a = a; 
    temp_b = b; 
    //Write operation 
    //Assign values of temporary variables to left-hand-side variables 
    a = temp_b; 
    b = temp_a; 
end 
  
For digital design, use of nonblocking assignments in place of blocking assignments is 
highly recommended in places where concurrent data transfers take place after a common 
event. In such cases, blocking assignments can potentially cause race conditions because 
the final result depends on the order in which the assignments are evaluated. Nonblocking 
assignments can be used effectively to model concurrent data transfers because the final 
result is not dependent on the order in which the assignments are evaluated. Typical 
applications of nonblocking assignments include pipeline modeling and modeling of 
several mutually exclusive data transfers. On the downside, nonblocking assignments can 
potentially cause a degradation in the simulator performance and increase in memory 
usage. 
 



 
 
 

 
 

136

 
7.3 Timing Controls 
  
 
Various behavioral timing control constructs are available in Verilog. In Verilog, if there 
are no timing control statements, the simulation time does not advance. Timing controls 
provide a way to specify the simulation time at which procedural statements will execute. 
There are three methods of timing control: delay-based timing control, event-based 
timing control, and level-sensitive timing control. 
  
7.3.1 Delay-Based Timing Control 
  
Delay-based timing control in an expression specifies the time duration between when the 
statement is encountered and when it is executed. We used delay-based timing control 
statements when writing few modules in the preceding chapters but did not explain them 
in detail. In this section, we will discuss delay-based timing control statements. Delays 
are specified by the symbol #. Syntax for the delay-based timing control statement is 
shown below. 
  
delay3 ::= # delay_value | # ( delay_value [ , delay_value [ , 
           delay_value ] ] ) 
delay2 ::= # delay_value | # ( delay_value [ , delay_value ] ) 
delay_value ::= 
          unsigned_number 
        | parameter_identifier 
        | specparam_identifier 
        | mintypmax_expression 
  
 
Delay-based timing control can be specified by a number, identifier, or a 
mintypmax_expression. There are three types of delay control for procedural 
assignments: regular delay control, intra-assignment delay control, and zero delay 
control. 
  
Regular delay control 
  
Regular delay control is used when a non-zero delay is specified to the left of a 
procedural assignment. Usage of regular delay control is shown in Example 7-10. 
  
Example 7-10 Regular Delay Control 
  
//define parameters 
parameter latency = 20; 
parameter delta = 2; 
//define register variables 
reg x, y, z, p, q; 
 
initial 
begin 
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        x = 0; // no delay control 
        #10 y = 1; // delay control with a number. Delay execution of 
                                // y = 1 by 10 units 
 
        #latency z = 0; // Delay control with identifier. Delay of 20 
units 
        #(latency + delta) p = 1; // Delay control with expression 
 
        #y x = x + 1; // Delay control with identifier. Take value of 
y. 
 
        #(4:5:6) q = 0; // Minimum, typical and maximum delay values. 
                        //Discussed in gate-level modeling chapter. 
end 
  
 
In Example 7-10, the execution of a procedural assignment is delayed by the number 
specified by the delay control. For begin-end groups, delay is always relative to time 
when the statement is encountered. Thus, y =1 is executed 10 units after it is encountered 
in the activity flow. 
  
Intra-assignment delay control 
  
 
Instead of specifying delay control to the left of the assignment, it is possible to assign a 
delay to the right of the assignment operator. Such delay specification alters the flow of 
activity in a different manner. Example 7-11 shows the contrast between intra-assignment 
delays and regular delays. 
  
Example 7-11 Intra-assignment Delays 
  
//define register variables 
reg x, y, z; 
 
//intra assignment delays 
initial 
begin 
        x = 0; z = 0; 
        y = #5 x + z; //Take value of x and z at the time=0, evaluate 
                   //x + z and then wait 5 time units to assign value 
                  //to y. 
 
end 
 
//Equivalent method with temporary variables and regular delay control 
initial 
begin 
        x = 0; z = 0; 
        temp_xz = x + z; 
        #5 y = temp_xz; //Take value of x + z at the current time and 
                 //store it in a temporary variable. Even though x and 
z 
                 //might change between 0 and 5, 
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                 //the value assigned to y at time 5 is unaffected. 
end 
  
 
Note the difference between intra-assignment delays and regular delays. Regular delays 
defer the execution of the entire assignment. Intra-assignment delays compute the right-
hand-side expression at the current time and defer the assignment of the computed value 
to the left-hand-side variable. Intra-assignment delays are like using regular delays with a 
temporary variable to store the current value of a right-hand-side expression. 
  
Zero delay control 
  
 
Procedural statements in different always-initial blocks may be evaluated at the same 
simulation time. The order of execution of these statements in different always-initial 
blocks is nondeterministic. Zero delay control is a method to ensure that a statement is 
executed last, after all other statements in that simulation time are executed. This is used 
to eliminate race conditions. However, if there are multiple zero delay statements, the 
order between them is nondeterministic. Example 7-12 illustrates zero delay control. 
  
Example 7-12 Zero Delay Control 
  
initial 
begin 
    x = 0; 
    y = 0; 
end 
 
initial 
begin 
    #0 x = 1; //zero delay control 
    #0 y = 1; 
end 
  
 
In Example 7-12, four statements?x = 0, y = 0, x = 1, y = 1?are to be executed at 
simulation time 0. However, since x = 1 and y = 1 have #0, they will be executed last. 
Thus, at the end of time 0, x will have value 1 and y will have value 1. The order in 
which x = 1 and y = 1 are executed is not deterministic. 
  
 
The above example was used as an illustration. However, using #0 is not a recommended 
practice. 
  
7.3.2 Event-Based Timing Control 
  
 
An event is the change in the value on a register or a net. Events can be utilized to trigger 
execution of a statement or a block of statements. There are four types of event-based 
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timing control: regular event control, named event control, event OR control, and level-
sensitive timing control. 
  
Regular event control 
  
 
The @ symbol is used to specify an event control. Statements can be executed on 
changes in signal value or at a positive or negative transition of the signal value. The 
keyword posedge is used for a positive transition, as shown in Example 7-13. 
  
Example 7-13 Regular Event Control 
  
@(clock) q = d; //q = d is executed whenever signal clock changes value
@(posedge clock) q = d; //q = d is executed whenever signal clock does 
                       //a positive transition ( 0 to 1,x or z, 
                       // x to 1, z to 1 ) 
@(negedge clock) q = d; //q = d is executed whenever signal clock does 
                       //a negative transition ( 1 to 0,x or z, 
                       //x to 0, z to 0) 
q = @(posedge clock) d; //d is evaluated immediately and assigned 
                       //to q at the positive edge of clock 
  
Named event control 
  
 
Verilog provides the capability to declare an event and then trigger and recognize the 
occurrence of that event (see Example 7-14). The event does not hold any data. A named 
event is declared by the keyword event. An event is triggered by the symbol ->. The 
triggering of the event is recognized by the symbol @. 
  
Example 7-14 Named Event Control 
  
//This is an example of a data buffer storing data after the 
//last packet of data has arrived. 
 
event received_data; //Define an event called received_data 
 
always @(posedge clock) //check at each positive clock edge 
begin 
        if(last_data_packet) //If this is the last data packet 
                ->received_data; //trigger the event received_data 
end 
 
always @(received_data) //Await triggering of event received_data 
                        //When event is triggered, store all four 
                        //packets of received data in data buffer 
                      //use concatenation operator { } 
        data_buf = {data_pkt[0], data_pkt[1], data_pkt[2], 
data_pkt[3]}; 
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Event OR Control 
  
 
Sometimes a transition on any one of multiple signals or events can trigger the execution 
of a statement or a block of statements. This is expressed as an OR of events or signals. 
The list of events or signals expressed as an OR is also known as a sensitivity list. The 
keyword or is used to specify multiple triggers, as shown in Example 7-15. 
  
Example 7-15 Event OR Control (Sensitivity List) 
  
//A level-sensitive latch with asynchronous reset 
always @( reset or clock or d) 
                                //Wait for reset or clock or d to 
change 
begin 
        if (reset)               //if reset signal is high, set q to 0.
                q = 1'b0; 
        else    if(clock)       //if clock is high, latch input 
                q = d; 
end 
  
 
Sensitivity lists can also be specified using the "," (comma) operator instead of the or 
operator. Example 7-16 shows how the above example can be rewritten using the comma 
operator. Comma operators can also be applied to sensitivity lists that have edge-sensitive 
triggers. 
  
Example 7-16 Sensitivity List with Comma Operator 
  
//A level-sensitive latch with asynchronous reset 
always @( reset, clock, d) 
                                //Wait for reset or clock or d to 
change 
begin 
        if (reset)               //if reset signal is high, set q to 0.
                q = 1'b0; 
        else    if(clock)       //if clock is high, latch input 
                q = d; 
end 
 
 
//A positive edge triggered D flipflop with asynchronous falling 
//reset can be modeled as shown below 
always @(posedge clk, negedge reset) //Note use of comma operator 
if(!reset) 
   q <=0; 
else 
   q <=d; 
  
 
When the number of input variables to a combination logic block are very large, 
sensitivity lists can become very cumbersome to write. Moreover, if an input variable is 
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missed from the sensitivity list, the block will not behave like a combinational logic 
block. To solve this problem, Verilog HDL contains two special symbols: @* and @(*). 
Both symbols exhibit identical behavior. These special symbols are sensitive to a change 
on any signal that may be read by the statement group that follows this symbol.[1] 
Example 7-17 shows an example of this special symbol for combinational logic 
sensitivity lists. 
 
[1] See IEEE Standard Verilog Hardware Description Language document for details and 
restrictions on the @* and @(*) symbols. 
  
Example 7-17 Use of @* Operator 
  
//Combination logic block using the or operator 
//Cumbersome to write and it is easy to miss one input to the block 
always @(a or b or c or d or e or f or g or h or p or m) 
 
begin 
out1 = a ? b+c : d+e; 
out2 = f ? g+h : p+m; 
end 
 
//Instead of the above method, use @(*) symbol 
//Alternately, the @* symbol can be used 
//All input variables are automatically included in the 
//sensitivity list. 
always @(*) 
begin 
out1 = a ? b+c : d+e; 
out2 = f ? g+h : p+m; 
end 
  
7.3.3 Level-Sensitive Timing Control 
  
 
Event control discussed earlier waited for the change of a signal value or the triggering of 
an event. The symbol @ provided edge-sensitive control. Verilog also allows level-
sensitive timing control, that is, the ability to wait for a certain condition to be true before 
a statement or a block of statements is executed. The keyword wait is used for level-
sensitive constructs. 
  
always 
    wait (count_enable) #20 count = count + 1; 
  
 
In the above example, the value of count_enable is monitored continuously. If 
count_enable is 0, the statement is not entered. If it is logical 1, the statement count = 
count + 1 is executed after 20 time units. If count_enable stays at 1, count will be 
incremented every 20 time units. 
  
 
 



 
 
 

 
 

142

 
7.4 Conditional Statements 
  
 
Conditional statements are used for making decisions based upon certain conditions. 
These conditions are used to decide whether or not a statement should be executed. 
Keywords if and else are used for conditional statements. There are three types of 
conditional statements. Usage of conditional statements is shown below. For formal 
syntax, see Appendix D, Formal Syntax Definition. 
  
//Type 1 conditional statement. No else statement. 
//Statement executes or does not execute. 
if (<expression>) true_statement ; 
 
//Type 2 conditional statement. One else statement 
//Either true_statement or false_statement is evaluated 
if (<expression>) true_statement ; else false_statement ; 
 
//Type 3 conditional statement. Nested if-else-if. 
//Choice of multiple statements. Only one is executed. 
if (<expression1>) true_statement1 ; 
else if (<expression2>) true_statement2 ; 
else if (<expression3>) true_statement3 ; 
else default_statement ; 
  
 
The <expression> is evaluated. If it is true (1 or a non-zero value), the true_statement is 
executed. However, if it is false (zero) or ambiguous (x), the false_statement is executed. 
The <expression> can contain any operators mentioned in Table 6-1 on page 96. Each 
true_statement or false_statement can be a single statement or a block of multiple 
statements. A block must be grouped, typically by using keywords begin and end. A 
single statement need not be grouped. 
  
Example 7-18 Conditional Statement Examples 
  
//Type 1 statements 
if(!lock) buffer = data; 
if(enable) out = in; 
 
//Type 2 statements 
if (number_queued < MAX_Q_DEPTH) 
begin 
        data_queue = data; 
        number_queued = number_queued + 1; 
end 
else 
        $display("Queue Full. Try again"); 
 
//Type 3 statements 
//Execute statements based on ALU control signal. 
if (alu_control == 0) 
        y = x + z; 
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else if(alu_control == 1) 
        y = x - z; 
else if(alu_control == 2) 
        y = x * z; 
else 
        $display("Invalid ALU control signal"); 
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7.5 Multiway Branching 
  
 
In type 3 conditional statement in Section 7.4, Conditional Statements, there were many 
alternatives, from which one was chosen. The nested if-else-if can become unwieldy if 
there are too many alternatives. A shortcut to achieve the same result is to use the case 
statement. 
  
7.5.1 case Statement 
  
 
The keywords case, endcase, and default are used in the case statement.. 
  
case (expression) 
    alternative1: statement1; 
    alternative2: statement2; 
    alternative3: statement3; 
       ... 
       ... 
    default: default_statement; 
endcase 
  
 
Each of statement1, statement2  , default_statement can be a single statement or a block 
of multiple statements. A block of multiple statements must be grouped by keywords 
begin and end. The expression is compared to the alternatives in the order they are 
written. For the first alternative that matches, the corresponding statement or block is 
executed. If none of the alternatives matches, the default_statement is executed. The 
default_statement is optional. Placing of multiple default statements in one case statement 
is not allowed. The case statements can be nested. The following Verilog code 
implements the type 3 conditional statement in Example 7-18. 
  
//Execute statements based on the ALU control signal 
reg [1:0] alu_control; 
... 
... 
case (alu_control) 
  2'd0 : y = x + z; 
  2'd1 : y = x - z; 
  2'd2 : y = x * z; 
  default : $display("Invalid ALU control signal"); 
endcase 
  
 
The case statement can also act like a many-to-one multiplexer. To understand this, let us 
model the 4-to-1 multiplexer in Section 6.5, Examples, on page 106, using case 
statements. The I/O ports are unchanged. Notice that an 8-to-1 or 16-to-1 multiplexer can 
also be easily implemented by case statements. 
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Example 7-19 4-to-1 Multiplexer with Case Statement 
  
module mux4_to_1 (out, i0, i1, i2, i3, s1, s0); 
 
// Port declarations from the I/O diagram 
output out; 
input i0, i1, i2, i3; 
input s1, s0; 
reg out; 
 
always @(s1 or s0 or i0 or i1 or i2 or i3) 
case ({s1, s0}) //Switch based on concatenation of control signals 
        2'd0 : out = i0; 
        2'd1 : out = i1; 
        2'd2 : out = i2; 
        2'd3 : out = i3; 
        default: $display("Invalid control signals"); 
endcase 
 
endmodule 
  
 
The case statement compares 0, 1, x, and z values in the expression and the alternative bit 
for bit. If the expression and the alternative are of unequal bit width, they are zero filled 
to match the bit width of the widest of the expression and the alternative. In Example 7-
20, we will define a 1-to-4 demultiplexer for which outputs are completely specified, that 
is, definitive results are provided even for x and z values on the select signal. 
  
Example 7-20 Case Statement with x and z 
  
module demultiplexer1_to_4 (out0, out1, out2, out3, in, s1, s0); 
 
// Port declarations from the I/O diagram 
output out0, out1, out2, out3; 
reg  out0,  out1,  out2,  out3; 
input in; 
input s1, s0; 
 
always @(s1 or s0 or in) 
case ({s1, s0}) //Switch based on control signals 
    2'b00 :  begin  out0 = in;  out1 = 1'bz;  out2 = 1'bz;  out3 = 
1'bz; end 
    2'b01 :  begin  out0 = 1'bz;  out1 = in;  out2 = 1'bz;  out3 = 
1'bz; end 
    2'b10 :  begin  out0 = 1'bz;  out1 = 1'bz;  out2 = in;  out3 = 
1'bz; end 
    2'b11 :  begin  out0 = 1'bz;  out1 = 1'bz;  out2 = 1'bz;  out3 = 
in; end 
 
    //Account for unknown signals on select. If any select signal is x 
    //then outputs are x. If any select signal is z, outputs are z. 
    //If one is x and the other is z, x gets higher priority. 
    2'bx0, 2'bx1, 2'bxz, 2'bxx, 2'b0x, 2'b1x, 2'bzx : 
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         begin 
               out0 = 1'bx;  out1 = 1'bx;  out2 = 1'bx;  out3 = 1'bx; 
         end 
    2'bz0, 2'bz1, 2'bzz, 2'b0z, 2'b1z : 
         begin 
               out0 = 1'bz;  out1 = 1'bz;  out2 = 1'bz;  out3 = 1'bz; 
         end 
    default: $display("Unspecified control signals"); 
endcase 
 
endmodule 
  
 
In the demultiplexer shown above, multiple input signal combinations such as 2'bz0, 
2'bz1, 2,bzz, 2'b0z, and 2'b1z that cause the same block to be executed are put together 
with a comma (,) symbol. 
  
7.5.2 casex, casez Keywords 
  
 
There are two variations of the case statement. They are denoted by keywords, casex and 
casez. 
  

• casez treats all z values in the case alternatives or the case expression as don't 
cares. All bit positions with z can also represented by ? in that position. 

 
• casex treats all x and z values in the case item or the case expression as don't 

cares. 
  
 
The use of casex and casez allows comparison of only non-x or -z positions in the case 
expression and the case alternatives. Example 7-21 illustrates the decoding of state bits in 
a finite state machine using a casex statement. The use of casez is similar. Only one bit is 
considered to determine the next state and the other bits are ignored. 
  
Example 7-21 casex Use 
  
reg [3:0] encoding; 
integer state; 
 
casex (encoding) //logic value x represents a don't care bit. 
4'b1xxx : next_state = 3; 
4'bx1xx : next_state = 2; 
4'bxx1x : next_state = 1; 
4'bxxx1 : next_state = 0; 
default : next_state = 0; 
endcase 
  
 
Thus, an input encoding = 4'b10xz would cause next_state = 3 to be executed.  
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7.6 Loops 
  
 
There are four types of looping statements in Verilog: while, for, repeat, and forever. The 
syntax of these loops is very similar to the syntax of loops in the C programming 
language. All looping statements can appear only inside an initial or always block. Loops 
may contain delay expressions. 
  
7.6.1 While Loop 
  
 
The keyword while is used to specify this loop. The while loop executes until the while-
expression is not true. If the loop is entered when the while-expression is not true, the 
loop is not executed at all. Each expression can contain the operators in Table 6-1 on 
page 96. Any logical expression can be specified with these operators. If multiple 
statements are to be executed in the loop, they must be grouped typically using keywords 
begin and end. Example 7-22 illustrates the use of the while loop. 
  
Example 7-22 While Loop 
  
//Illustration 1: Increment count from 0 to 127. Exit at count 128. 
//Display the count variable. 
integer count; 
 
initial 
begin 
        count = 0; 
 
        while (count < 128) //Execute loop till count is 127. 
                         //exit at count 128 
        begin 
                $display("Count = %d", count); 
               count = count + 1; 
        end 
end 
 
 
//Illustration 2: Find the first bit with a value 1 in flag (vector 
variable) 
'define TRUE 1'b1'; 
'define FALSE 1'b0; 
reg [15:0] flag; 
integer i; //integer to keep count 
reg continue; 
 
initial 
begin 
  flag = 16'b 0010_0000_0000_0000; 
  i = 0; 
  continue = 'TRUE; 
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  while((i < 16) && continue ) //Multiple conditions using operators. 
  begin 
    if (flag[i]) 
    begin 
      $display("Encountered a TRUE bit at element number %d", i); 
      continue = 'FALSE; 
    end 
    i = i + 1; 
  end 
end 
  
7.6.2 For Loop 
  
 
The keyword for is used to specify this loop. The for loop contains three parts: 
  

• An initial condition 
 

• A check to see if the terminating condition is true 
 

• A procedural assignment to change value of the control variable 
  
 
The counter described in Example 7-22 can be coded as a for loop (Example 7-23). The 
initialization condition and the incrementing procedural assignment are included in the 
for loop and do not need to be specified separately. Thus, the for loop provides a more 
compact loop structure than the while loop. Note, however, that the while loop is more 
general-purpose than the for loop. The for loop cannot be used in place of the while loop 
in all situations. 
  
Example 7-23 For Loop 
  
integer count; 
 
initial 
    for ( count=0; count < 128; count = count + 1) 
           $display("Count = %d", count); 
  
 
for loops can also be used to initialize an array or memory, as shown below. 
  
//Initialize array elements 
'define MAX_STATES 32 
integer state [0: 'MAX_STATES-1]; //Integer array state with elements 
0:31 
integer i; 
 
initial 
begin 
   for(i = 0; i < 32; i = i + 2) //initialize all even locations with 0
      state[i] = 0; 
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   for(i = 1; i < 32; i = i + 2) //initialize all odd locations with 1 
      state[i] = 1; 
end 
  
 
for loops are generally used when there is a fixed beginning and end to the loop. If the 
loop is simply looping on a certain condition, it is better to use the while loop. 
  
7.6.3 Repeat Loop 
  
 
The keyword repeat is used for this loop. The repeat construct executes the loop a fixed 
number of times. A repeat construct cannot be used to loop on a general logical 
expression. A while loop is used for that purpose. A repeat construct must contain a 
number, which can be a constant, a variable or a signal value. However, if the number is 
a variable or signal value, it is evaluated only when the loop starts and not during the loop 
execution. 
  
 
The counter in Example 7-22 can be expressed with the repeat loop, as shown in 
Illustration 1 in Example 7-24. Illustration 2 shows how to model a data buffer that 
latches data at the positive edge of clock for the next eight cycles after it receives a data 
start signal. 
  
Example 7-24 Repeat Loop 
  
//Illustration 1 : increment and display count from 0 to 127 
integer count; 
 
initial 
begin 
   count = 0; 
   repeat(128) 
   begin 
        $display("Count = %d", count); 
        count = count + 1; 
   end 
end 
 
//Illustration 2 : Data buffer module example 
//After it receives a data_start signal. 
//Reads data for next 8 cycles. 
 
module data_buffer(data_start, data, clock); 
 
parameter cycles = 8; 
input data_start; 
input [15:0] data; 
input clock; 
 
reg [15:0] buffer [0:7]; 
integer i; 
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always @(posedge clock) 
begin 
  if(data_start) //data start signal is true 
  begin 
    i = 0; 
    repeat(cycles) //Store data at the posedge of next 8 clock 
                   //cycles 
    begin 
      @(posedge clock) buffer[i] = data; //waits till next 
                                      // posedge to latch data 
      i = i + 1; 
    end 
  end 
end 
 
endmodule 
  
7.6.4 Forever loop 
  
 
The keyword forever is used to express this loop. The loop does not contain any 
expression and executes forever until the $finish task is encountered. The loop is 
equivalent to a while loop with an expression that always evaluates to true, e.g., while 
(1). A forever loop can be exited by use of the disable statement. 
  
 
A forever loop is typically used in conjunction with timing control constructs. If timing 
control constructs are not used, the Verilog simulator would execute this statement 
infinitely without advancing simulation time and the rest of the design would never be 
executed. Example 7-25 explains the use of the forever statement. 
  
Example 7-25 Forever Loop 
  
//Example 1: Clock generation 
//Use forever loop instead of always block 
reg clock; 
 
initial 
begin 
        clock = 1'b0; 
        forever #10 clock = ~clock; //Clock with period of 20 units 
end 
 
//Example 2: Synchronize two register values at every positive edge of 
//clock 
reg clock; 
reg x, y; 
 
initial 
        forever @(posedge clock) x = y; 
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7.7 Sequential and Parallel Blocks 
  
 
Block statements are used to group multiple statements to act together as one. In previous 
examples, we used keywords begin and end to group multiple statements. Thus, we used 
sequential blocks where the statements in the block execute one after another. In this 
section we discuss the block types: sequential blocks and parallel blocks. We also discuss 
three special features of blocks: named blocks, disabling named blocks, and nested 
blocks. 
  
7.7.1 Block Types 
  
 
There are two types of blocks: sequential blocks and parallel blocks. 
  
Sequential blocks 
  
 
The keywords begin and end are used to group statements into sequential blocks. 
Sequential blocks have the following characteristics: 
  

• The statements in a sequential block are processed in the order they are specified. 
A statement is executed only after its preceding statement completes execution 
(except for nonblocking assignments with intra-assignment timing control). 

 
• If delay or event control is specified, it is relative to the simulation time when the 

previous statement in the block completed execution. 
  
 
We have used numerous examples of sequential blocks in this book. Two more examples 
of sequential blocks are given in Example 7-26. Statements in the sequential block 
execute in order. In Illustration 1, the final values are x = 0, y= 1, z = 1, w = 2 at 
simulation time 0. In Illustration 2, the final values are the same except that the 
simulation time is 35 at the end of the block. 
  
Example 7-26 Sequential Blocks 
  
//Illustration 1: Sequential block without delay 
reg x, y; 
reg [1:0] z, w; 
 
initial 
begin 
        x = 1'b0; 
        y = 1'b1; 
        z = {x, y}; 
        w = {y, x}; 
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end 
 
//Illustration 2: Sequential blocks with delay. 
reg x, y; 
reg [1:0] z, w; 
 
initial 
begin 
        x = 1'b0; //completes at simulation time 0 
        #5 y = 1'b1; //completes at simulation time 5 
        #10 z = {x, y}; //completes at simulation time 15 
        #20 w = {y, x}; //completes at simulation time 35 
end 
  
Parallel blocks 
  
 
Parallel blocks, specified by keywords fork and join, provide interesting simulation 
features. Parallel blocks have the following characteristics: 
  

• Statements in a parallel block are executed concurrently. 
 

• Ordering of statements is controlled by the delay or event control assigned to each 
statement. 

 
• If delay or event control is specified, it is relative to the time the block was 

entered. 
  
 
Notice the fundamental difference between sequential and parallel blocks. All statements 
in a parallel block start at the time when the block was entered. Thus, the order in which 
the statements are written in the block is not important. 
  
Let us consider the sequential block with delay in Example 7-26 and convert it to a 
parallel block. The converted Verilog code is shown in Example 7-27. The result of 
simulation remains the same except that all statements start in parallel at time 0. Hence, 
the block finishes at time 20 instead of time 35. 
  
Example 7-27 Parallel Blocks 
  
//Example 1: Parallel blocks with delay. 
reg x, y; 
reg [1:0] z, w; 
 
initial 
fork 
        x = 1'b0; //completes at simulation time 0 
        #5 y = 1'b1; //completes at simulation time 5 
        #10 z = {x, y}; //completes at simulation time 10 
        #20 w = {y, x}; //completes at simulation time 20 
join 
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 Parallel blocks provide a mechanism to execute statements in parallel. However, it is 
important to be careful with parallel blocks because of implicit race conditions that might 
arise if two statements that affect the same variable complete at the same time. Shown 
below is the parallel version of Illustration 1 from Example 7-26. Race conditions have 
been deliberately introduced in this example. All statements start at simulation time 0. 
The order in which the statements will execute is not known. Variables z and w will get 
values 1 and 2 if x = 1'b0 and y = 1'b1 execute first. Variables z and w will get values 
2'bxx and 2'bxx if x = 1'b0 and y = 1'b1 execute last. Thus, the result of z and w is 
nondeterministic and dependent on the simulator implementation. In simulation time, all 
statements in the fork-join block are executed at once. However, in reality, CPUs running 
simulations can execute only one statement at a time. Different simulators execute 
statements in different order. Thus, the race condition is a limitation of today's 
simulators, not of the fork-join block. 
  
//Parallel blocks with deliberate race condition 
reg x, y; 
reg [1:0] z, w; 
 
initial 
fork 
        x = 1'b0; 
        y = 1'b1; 
        z = {x, y}; 
        w = {y, x}; 
join 
  
 
The keyword fork can be viewed as splitting a single flow into independent flows. The 
keyword join can be seen as joining the independent flows back into a single flow. 
Independent flows operate concurrently. 
  
7.7.2 Special Features of Blocks 
  
 
We discuss three special features available with block statements: nested blocks, named 
blocks, and disabling of named blocks. 
  
Nested blocks 
  
 
Blocks can be nested. Sequential and parallel blocks can be mixed, as shown in Example 
7-28. 
  
Example 7-28 Nested Blocks 
  
//Nested blocks 
initial 
begin 
        x = 1'b0; 
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        fork 
                #5 y = 1'b1; 
                #10 z = {x, y}; 
        join 
        #20 w = {y, x}; 
end 
  
Named blocks 
  
 
Blocks can be given names. 
  

• Local variables can be declared for the named block. 
 

• Named blocks are a part of the design hierarchy. Variables in a named block can 
be accessed by using hierarchical name referencing. 

 
• Named blocks can be disabled, i.e., their execution can be stopped. 

  
 
Example 7-29 shows naming of blocks and hierarchical naming of blocks. 
  
Example 7-29 Named Blocks 
  
//Named blocks 
module top; 
 
initial 
begin: block1 //sequential block named block1 
integer i; //integer i is static and local to block1 
           // can be accessed by hierarchical name, top.block1.i 
... 
... 
end 
 
initial 
fork: block2 //parallel block named block2 
reg i; // register i is static and local to block2 
                // can be accessed by hierarchical name, top.block2.i 
... 
... 
join 
  
Disabling named blocks 
  
 
The keyword disable provides a way to terminate the execution of a named block. disable 
can be used to get out of loops, handle error conditions, or control execution of pieces of 
code, based on a control signal. Disabling a block causes the execution control to be 
passed to the statement immediately succeeding the block. For C programmers, this is 
very similar to the break statement used to exit a loop. The difference is that a break 
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statement can break the current loop only, whereas the keyword disable allows disabling 
of any named block in the design. 
  
 
Consider the illustration in Example 7-22 on page 142, which looks for the first true bit in 
the flag. The while loop can be recoded, using the disable statement as shown in Example 
7-30. The disable statement terminates the while loop as soon as a true bit is seen. 
  
Example 7-30 Disabling Named Blocks 
  
//Illustration: Find the first bit with a value 1 in flag (vector 
//variable) 
reg [15:0] flag; 
integer i; //integer to keep count 
 
initial 
begin 
  flag = 16'b 0010_0000_0000_0000; 
  i = 0; 
  begin: block1 //The main block inside while is named block1 
  while(i < 16) 
   begin 
      if (flag[i]) 
      begin 
          $display("Encountered a TRUE bit at element number %d", i); 
          disable block1; //disable block1 because you found true bit. 
      end 
      i = i + 1; 
   end 
  end 
end 
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7.8 Generate Blocks 
  
 
Generate statements allow Verilog code to be generated dynamically at elaboration time 
before the simulation begins. This facilitates the creation of parametrized models. 
Generate statements are particularly convenient when the same operation or module 
instance is repeated for multiple bits of a vector, or when certain Verilog code is 
conditionally included based on parameter definitions. 
  
 
Generate statements allow control over the declaration of variables, functions, and tasks, 
as well as control over instantiations. All generate instantiations are coded with a module 
scope and require the keywords generate - endgenerate. 
  
 
Generated instantiations can be one or more of the following types: 
  

• Modules 
 

• User defined primitives 
 

• Verilog gate primitives 
 

• Continuous assignments 
 

• initial and always blocks 
  
 
Generated declarations and instantiations can be conditionally instantiated into a design. 
Generated variable declarations and instantiations can be multiply instantiated into a 
design. Generated instances have unique identifier names and can be referenced 
hierarchically. To support interconnection between structural elements and/or procedural 
blocks, generate statements permit the following Verilog data types to be declared within 
the generate scope: 
  

• net, reg 
 

• integer, real, time, realtime 
 

• event 
  
Generated data types have unique identifier names and can be referenced hierarchically. 
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Parameter redefinition using ordered or named assignment or a defparam statement can 
be declared with the generate scope. However, a defparam statement within a generate 
scope is allowed to modify the value of a parameter only in the same generate scope or 
within the hierarchy instantiated within the generate scope. 
  
 
Task and function declarations are permitted within the generate scope but not within a 
generate loop. Generated tasks and functions have unique identifier names and can be 
referenced hierarchically. 
  
 
Some module declarations and module items are not permitted in a generate statement. 
They include: 
  

• parameters, local parameters 
 

• input, output, inout declarations 
 

• specify blocks 
  
Connections to generated module instances are handled in the same way as with normal 
module instances. 
  
 
There are three methods to create generate statements: 
  

• Generate loop 
 

• Generate conditional 
 

• Generate case 
  
 
The following sections explain these methods in detail: 
  
7.8.1 Generate Loop 
  
 
A generate loop permits one or more of the following to be instantiated multiple times 
using a for loop: 
  

• Variable declarations 
 

• Modules 
 

• User defined primitives, Gate primitives 
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• Continuous assignments 
 

• initial and always blocks 
  
 
Example 7-31 shows a simple example of how to generate a bit-wise xor of two N-bit 
buses. Note that this implementation can be done in a simpler fashion by using vector 
nets instead of bits. However, we choose this example to illustrate the use of generate 
loop. 
  
Example 7-31 Bit-wise Xor of Two N-bit Buses 
  
// This module generates a bit-wise xor of two N-bit buses 
 
module bitwise_xor (out, i0, i1); 
// Parameter Declaration. This can be redefined 
parameter N = 32; // 32-bit bus by default 
// Port declarations 
output [N-1:0] out; 
input [N-1:0] i0, i1; 
 
// Declare a temporary loop variable. This variable is used only 
// in the evaluation of generate blocks. This variable does not 
// exist during the simulation of a Verilog design 
genvar j; 
 
//Generate the bit-wise Xor with a single loop 
generate for (j=0; j<N; j=j+1) begin: xor_loop 
 xor g1 (out[j], i0[j], i1[j]); 
end //end of the for loop inside the generate block 
endgenerate //end of the generate block 
 
// As an alternate style, 
// the xor gates could be replaced by always blocks. 
// reg [N-1:0] out; 
//generate for (j=0; j<N; j=j+1) begin: bit 
// always @(i0[j] or i1[j]) out[j] = i0[j] ^ i1[j]; 
//end 
//endgenerate 
 
endmodule 
  
 
Some interesting observations for Example 7-31 are listed below. 
  

• Prior to the beginning of the simulation, the simulator elaborates (unrolls) the 
code in the generate blocks to create a flat representation without the generate 
blocks. The unrolled code is then simulated. Thus, generate blocks are simply a 
convenient way of replacing multiple repetitive Verilog statements with a single 
statement inside a loop. 

 
 



 
 
 

 
 

159

• genvar is a keyword used to declare variables that are used only in the evaluation 
of generate block. Genvars do not exist during simulation of the design. 

 
• The value of a genvar can be defined only by a generate loop. 

 
• Generate loops can be nested. However, two generate loops using the same 

genvar as an index variable cannot be nested. 
 

• The name xor_loop assigned to the generate loop is used for hierarchical name 
referencing of the variables inside the generate loop. Therefore, the relative 
hierarchical names of the xor gates will be xor_loop[0].g1, xor_loop[1].g1, ......., 
xor_loop[31].g1. 

  
 
Generate loops are fairly flexible. Various Verilog constructs can be used inside the 
generate loops. It is important to imagine, the Verilog description after the generate loop 
is unrolled. That gives a clearer picture of the behavior of generate loops. Example 7-32 
shows a generated ripple adder with the net declaration inside the generate loop. 
  
Example 7-32 Generated Ripple Adder 
  
// This module generates a gate level ripple adder 
 
module ripple_adder(co, sum, a0, a1, ci); 
// Parameter Declaration. This can be redefined 
parameter N = 4; // 4-bit bus by default 
 
// Port declarations 
output [N-1:0] sum; 
output co; 
input [N-1:0] a0, a1; 
input ci; 
 
//Local wire declaration 
wire [N-1:0] carry; 
 
//Assign 0th bit of carry equal to carry input 
assign carry[0] = ci; 
 
// Declare a temporary loop variable. This variable is used only 
// in the evaluation of generate blocks. This variable does not 
// exist during the simulation of a Verilog design because the 
// generate loops are unrolled before simulation. 
genvar i; 
 
//Generate the bit-wise Xor with a single loop 
generate for (i=0; i<N; i=i+1) begin: r_loop 
 
   wire t1, t2, t3; 
   xor g1 (t1, a0[i], a1[i]); 
   xor g2 (sum[i], t1, carry[i]); 
   and g3 (t2, a0[i], a1[i]); 
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   and g4 (t3, t1, carry[i]); 
   or  g5 (carry[i+1], t2, t3); 
end //end of the for loop inside the generate block 
endgenerate //end of the generate block 
 
// For the above generate loop, the following relative hierarchical 
// instance names are generated 
// xor : r_loop[0].g1, r_loop[1].g1, r_loop[2].g1, r_loop[3].g1 
         r_loop[0].g2, r_loop[1].g2, r_loop[2].g2, r_loop[3].g2 
// and : r_loop[0].g3, r_loop[1].g3, r_loop[2].g3, r_loop[3].g3 
         r_loop[0].g4, r_loop[1].g4, r_loop[2].g4, r_loop[3].g4 
// or :  r_loop[0].g5, r_loop[1].g5, r_loop[2].g5, r_loop[3].g5 
 
// Generated instances are connected with the following 
// generated nets 
// Nets:  r_loop[0].t1, r_loop[0].t2, r_loop[0].t3 
//        r_loop[1].t1, r_loop[1].t2, r_loop[1].t3 
//        r_loop[2].t1, r_loop[2].t2, r_loop[2].t3 
//        r_loop[3].t1, r_loop[3].t2, r_loop[3].t3 
 
assign co = carry[N]; 
 
endmodule 
  
7.8.2 Generate Conditional 
  
 
A generate conditional is like an if-else-if generate construct that permits the following 
Verilog constructs to be conditionally instantiated into another module based on an 
expression that is deterministic at the time the design is elaborated: 
  

• Modules 
 

• User defined primitives, Gate primitives 
 

• Continuous assignments 
 

• initial and always blocks 
  
 
Example 7-33 shows the implementation of a parametrized multiplier. If either a0_width 
or a1_width parameters are less than 8 bits, a carry-look-ahead (CLA) multiplier is 
instantiated. If both a0_width or a1_width parameters are greater than or equal to 8 bits, a 
tree multiplier is instantiated. 
  
Example 7-33 Parametrized Multiplier using Generate Conditional 
  
// This module implements a parametrized multiplier 
 
module multiplier (product, a0, a1); 
// Parameter Declaration. This can be redefined 
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parameter a0_width = 8; // 8-bit bus by default 
parameter a1_width = 8; // 8-bit bus by default 
 
// Local Parameter declaration. 
// This parameter cannot be modified with defparam or 
// with module instance # statement. 
localparam product_width = a0_width + a1_width; 
 
// Port declarations 
output [product_width -1:0] product; 
input [a0_width-1:0] a0; 
input [a1_width-1:0] a1; 
 
 
// Instantiate the type of multiplier conditionally. 
// Depending on the value of the a0_width and a1_width 
// parameters at the time of instantiation, the appropriate 
// multiplier will be instantiated. 
generate 
 if (a0_width <8) || (a1_width < 8) 
    cla_multiplier #(a0_width, a1_width) m0 (product, a0, a1); 
 else 
    tree_multiplier #(a0_width, a1_width) m0 (product, a0, a1); 
endgenerate //end of the generate block 
 
endmodule 
  
7.8.3 Generate Case 
  
 
A generate case permits the following Verilog constructs to be conditionally instantiated 
into another module based on a select-one-of-many case construct that is deterministic at 
the time the design is elaborated: 
  

• Modules 
 

• User defined primitives, Gate primitives 
 

• Continuous assignments 
 

• initial and always blocks 
  
 
Example 7-34 shows the implementation of an N-bit adder using a generate case block. 
  
Example 7-34 Generate Case Example 
  
// This module generates an N-bit adder 
 
module adder(co, sum, a0, a1, ci); 
// Parameter Declaration. This can be redefined 
parameter N = 4; // 4-bit bus by default 
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// Port declarations 
output [N-1:0] sum; 
output co; 
input [N-1:0] a0, a1; 
input ci; 
 
// Instantiate the appropriate adder based on the width of the bus. 
// This is based on parameter N that can be redefined at 
// instantiation time. 
generate 
case (N) 
  //Special cases for 1 and 2 bit adders 
  1: adder_1bit adder1(c0, sum, a0, a1, ci); //1-bit implementation 
  2: adder_2bit adder2(c0, sum, a0, a1, ci); //2-bit implementation 
  // Default is N-bit carry look ahead adder 
  default: adder_cla #(N) adder3(c0, sum, a0, a1, ci); 
endcase 
endgenerate //end of the generate block 
 
endmodule 
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7.9 Examples 
  
 
In order to illustrate the use of behavioral constructs discussed earlier in this chapter, we 
consider three examples in this section. The first two, 4-to-1 multiplexer and 4-bit 
counter, are taken from Section 6.5, Examples. Earlier, these circuits were designed by 
using dataflow statements. We will model these circuits with behavioral statements. The 
third example is a new example. We will design a traffic signal controller, using 
behavioral constructs, and simulate it. 
  
7.9.1 4-to-1 Multiplexer 
  
 
We can define a 4-to-1 multiplexer with the behavioral case statement. This multiplexer 
was defined, in Section 6.5.1, 4-to-1 Multiplexer, by dataflow statements. It is described 
in Example 7-35 by behavioral constructs. The behavioral multiplexer can be substituted 
for the dataflow multiplexer; the simulation results will be identical. 
  
Example 7-35 Behavioral 4-to-1 Multiplexer 
  
// 4-to-1 multiplexer. Port list is taken exactly from 
// the I/O diagram. 
module mux4_to_1 (out, i0, i1, i2, i3, s1, s0); 
 
// Port declarations from the I/O diagram 
output out; 
input i0, i1, i2, i3; 
input s1, s0; 
//output declared as register 
reg out; 
 
//recompute the signal out if any input signal changes. 
//All input signals that cause a recomputation of out to 
//occur must go into the always @(...)  sensitivity list. 
always @(s1 or s0 or i0 or i1 or i2 or i3) 
begin 
  case ({s1, s0}) 
  2'b00: out = i0; 
  2'b01: out = i1; 
  2'b10: out = i2; 
  2'b11: out = i3; 
  default: out = 1'bx; 
  endcase 
end 
 
endmodule 
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7.9.2 4-bit Counter 
  
 
In Section 6.5.3, Ripple Counter, we designed a 4-bit ripple carry counter. We will now 
design the 4-bit counter by using behavioral statements. At dataflow or gate level, the 
counter might be designed in hardware as ripple carry, synchronous counter, etc. But, at a 
behavioral level, we work at a very high level of abstraction and do not care about the 
underlying hardware implementation. We will design only functionality. The counter can 
be designed by using behavioral constructs, as shown in Example 7-36. Notice how 
concise the behavioral counter description is compared to its dataflow counterpart. If we 
substitute the counter in place of the dataflow counter, the simulation results will be 
exactly the same, assuming that there are no x and z values on the inputs. 
  
Example 7-36 Behavioral 4-bit Counter Description 
  
//4-bit Binary  counter 
module counter(Q , clock, clear); 
 
// I/O ports 
output [3:0] Q; 
input clock, clear; 
//output defined as register 
reg [3:0] Q; 
 
always @( posedge clear  or negedge clock) 
begin 
  if (clear) 
     Q <= 4'd0;  //Nonblocking assignments are recommended 
                 //for creating sequential logic such as flipflops 
  else 
     Q <= Q + 1;// Modulo 16 is not necessary because Q is a 
                // 4-bit value and wraps around. 
end 
 
endmodule 
  
7.9.3 Traffic Signal Controller 
  
 
This example is fresh and has not been discussed before in the book. We will design a 
traffic signal controller, using a finite state machine approach. 
  
Specification 
  
 
Consider a controller for traffic at the intersection of a main highway and a country road.
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The following specifications must be considered: 
  

• The traffic signal for the main highway gets highest priority because cars are 
continuously present on the main highway. Thus, the main highway signal 
remains green by default. 

 
• Occasionally, cars from the country road arrive at the traffic signal. The traffic 

signal for the country road must turn green only long enough to let the cars on the 
country road go. 

 
• As soon as there are no cars on the country road, the country road traffic signal 

turns yellow and then red and the traffic signal on the main highway turns green 
again. 

 
• There is a sensor to detect cars waiting on the country road. The sensor sends a 

signal X as input to the controller. X = 1 if there are cars on the country road; 
otherwise, X= 0. 

 
• There are delays on transitions from S1 to S2, from S2 to S3, and from S4 to S0. 

The delays must be controllable. 
  
 
The state machine diagram and the state definitions for the traffic signal controller are 
shown in Figure 7-1. 
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Figure 7-1. FSM for Traffic Signal Controller 
  

 
 
Verilog description 
  
 
The traffic signal controller module can be designed with behavioral Verilog constructs, 
as shown in Example 7-37. 
  
Example 7-37 Traffic Signal Controller 
  
`define TRUE  1'b1 
`define FALSE 1'b0 
 
//Delays 
`define Y2RDELAY  3 //Yellow to red delay 
`define R2GDELAY  2 //Red to green delay 
 
module sig_control 
    (hwy, cntry, X, clock, clear); 
 
//I/O ports 
output [1:0] hwy, cntry; 
      //2-bit output for 3 states of signal 
      //GREEN, YELLOW, RED; 
reg [1:0] hwy, cntry; 
      //declared output signals are registers 
 
input X; 
      //if TRUE, indicates that there is car on 
      //the country road, otherwise FALSE 
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input clock, clear; 
 
parameter RED = 2'd0, 
          YELLOW = 2'd1, 
          GREEN = 2'd2; 
 
//State definition     HWY          CNTRY 
parameter S0 = 3'd0, //GREEN         RED 
          S1 = 3'd1, //YELLOW        RED 
          S2 = 3'd2, //RED           RED 
          S3 = 3'd3, //RED           GREEN 
          S4 = 3'd4; //RED           YELLOW 
 
//Internal state variables 
reg [2:0] state; 
reg [2:0] next_state; 
 
 
//state changes only at positive edge of clock 
always @(posedge clock) 
  if (clear) 
      state <= S0; //Controller starts in S0 state 
  else 
      state <= next_state; //State change 
 
 
//Compute values of main signal and country signal 
always @(state) 
begin 
  hwy = GREEN; //Default Light Assignment for Highway light 
  cntry = RED; //Default Light Assignment for Country light 
  case(state) 
     S0: ; // No change, use default 
     S1: hwy = YELLOW; 
     S2: hwy = RED; 
     S3:  begin 
            hwy = RED; 
            cntry = GREEN; 
          end 
     S4:  begin 
            hwy = RED; 
            cntry = `YELLOW; 
          end 
  endcase 
end 
 
//State machine using case statements 
always @(state or  X) 
begin 
    case (state) 
       S0: if(X) 
            next_state = S1; 
          else 
            next_state = S0; 
       S1: begin //delay some positive edges of clock 
            repeat(`Y2RDELAY) @(posedge clock) ; 
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            next_state = S2; 
          end 
       S2: begin //delay some positive edges of clock 
            repeat(`R2GDELAY) @(posedge clock); 
            next_state = S3; 
          end 
       S3: if(X) 
            next_state = S3; 
          else 
            next_state = S4; 
       S4: begin //delay some positive edges of clock 
            repeat(`Y2RDELAY) @(posedge clock) ; 
            next_state = S0; 
          end 
      default: next_state = S0; 
    endcase 
end 
 
endmodule 
  
Stimulus 
  
 
Stimulus can be applied to check if the traffic signal transitions correctly when cars arrive 
on the country road. The stimulus file in Example 7-38 instantiates the traffic signal 
controller and checks all possible states of the controller. 
  
Example 7-38 Stimulus for Traffic Signal Controller 
  
//Stimulus Module 
module stimulus; 
 
wire [1:0] MAIN_SIG, CNTRY_SIG; 
reg CAR_ON_CNTRY_RD; 
      //if TRUE, indicates that there is car on 
      //the country road 
reg CLOCK, CLEAR; 
 
//Instantiate signal controller 
sig_control SC(MAIN_SIG, CNTRY_SIG, CAR_ON_CNTRY_RD, CLOCK, CLEAR); 
 
//Set up monitor 
initial 
  $monitor($time, " Main Sig = %b Country Sig = %b Car_on_cntry = %b", 
                       MAIN_SIG, CNTRY_SIG, CAR_ON_CNTRY_RD); 
 
//Set up clock 
initial 
begin 
    CLOCK = `FALSE; 
    forever #5 CLOCK = ~CLOCK; 
end 
 
//control clear signal 
initial 
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begin 
    CLEAR = `TRUE; 
    repeat (5) @(negedge CLOCK); 
    CLEAR = `FALSE; 
end 
 
//apply stimulus 
initial 
begin 
    CAR_ON_CNTRY_RD = `FALSE; 
 
    repeat(20)@(negedge CLOCK); CAR_ON_CNTRY_RD = `TRUE; 
    repeat(10)@(negedge CLOCK); CAR_ON_CNTRY_RD = `FALSE; 
 
    repeat(20)@(negedge CLOCK); CAR_ON_CNTRY_RD = `TRUE; 
    repeat(10)@(negedge CLOCK); CAR_ON_CNTRY_RD = `FALSE; 
 
    repeat(20)@(negedge CLOCK); CAR_ON_CNTRY_RD = `TRUE; 
    repeat(10)@(negedge CLOCK); CAR_ON_CNTRY_RD = `FALSE; 
 
    repeat(10)@(negedge CLOCK); $stop; 
end 
endmodule 
  
 
Note that we designed only the behavior of the controller without worrying about how it 
will be implemented in hardware. 
  
 

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
 

170

 
7.10 Summary 
  
 
We discussed digital circuit design with behavioral Verilog constructs. 
  

• A behavioral description expresses a digital circuit in terms of the algorithms it 
implements. A behavioral description does not necessarily include the hardware 
implementation details. Behavioral modeling is used in the initial stages of a 
design process to evaluate various design-related trade-offs. Behavioral modeling 
is similar to C programming in many ways. 

 
• Structured procedures initial and always form the basis of behavioral modeling. 

All other behavioral statements can appear only inside initial or always blocks. 
An initial block executes once; an always block executes continuously until 
simulation ends. 

 
• Procedural assignments are used in behavioral modeling to assign values to 

register variables. Blocking assignments must complete before the succeeding 
statement can execute. Nonblocking assignments schedule assignments to be 
executed and continue processing to the succeeding statement. 

 
• Delay-based timing control, event-based timing control, and level-sensitive timing 

control are three ways to control timing and execution order of statements in 
Verilog. Regular delay, zero delay, and intra-assignment delay are three types of 
delay-based timing control. Regular event, named event, and event OR are three 
types of event-based timing control. The wait statement is used to model level-
sensitive timing control. 

 
• Conditional statements are modeled in behavioral Verilog with if and else 

statements. If there are multiple branches, use of case statements is recommended. 
casex and casez are special cases of the case statement. 

 
• Keywords while, for, repeat, and forever are used for four types of looping 

statements in Verilog. 
 

• Sequential and parallel are two types of blocks. Sequential blocks are specified by 
keywords begin and end . Parallel blocks are expressed by keywords fork and 
join. Blocks can be nested and named. If a block is named, the execution of the 
block can be disabled from anywhere in the design. Named blocks can be 
referenced by hierarchical names. 

 
• Generate statements allow Verilog code to be generated dynamically at 

elaboration time before the simulation begins. This facilitates the creation of 
parametrized models. Generate statements are particularly convenient when the 
same operation or module instance is repeated for multiple bits of a vector, or 
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when certain Verilog code is conditionally included based on parameter 
definitions. Generate loop, generate conditional, and generate case are the three 
types of generate statements. 
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7.11 Exercises 
  
 

1: Declare a register called oscillate. Initialize it to 0 and make it toggle every 30 
time units. Do not use always statement (Hint: Use the forever loop). 

2: Design a clock with time period = 40 and a duty cycle of 25% by using the 
always and initial statements. The value of clock at time = 0 should be 
initialized to 0. 

3: Given below is an initial block with blocking procedural assignments. At what 
simulation time is each statement executed? What are the intermediate and 
final values of a, b, c, d? 
  
initial 
begin 
    a = 1'b0; 
    b = #10 1'b1; 
    c = #5 1'b0; 
    d = #20 {a, b, c}; 
end 
 

4: Repeat exercise 3 if nonblocking procedural assignments were used. 

5: What is the order of execution of statements in the following Verilog code? Is 
there any ambiguity in the order of execution? What are the final values of a, 
b, c, d? 
  
initial 
begin 
        a = 1'b0; 
        #0 c = b; 
end 
initial 
begin 
        b = 1'b1; 
        #0 d = a; 
end 
 

6: What is the final value of d in the following example? (Hint: See intra-
assignment delays.) 
  
initial 
begin 
        b = 1'b1; c = 1'b0; 
        #10 b = 1'b0; 
initial 
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begin 
        d = #25 (b | c); 
end 
 

7: Design a negative edge-triggered D-flipflop (D_FF) with synchronous clear, 
active high (D_FF clears only at a negative edge of clock when clear is high). 
Use behavioral statements only. (Hint: Output q of D_FF must be declared as 
reg). Design a clock with a period of 10 units and test the D_FF. 

8: Design the D-flipflop in exercise 7 with asynchronous clear (D_FF clears 
whenever clear goes high. It does not wait for next negative edge). Test the 
D_FF. 

9: Using the wait statement, design a level-sensitive latch that takes clock and d 
as inputs and q as output. q = d whenever clock = 1. 

10: Design the 4-to-1 multiplexer in Example 7-19 by using if and else statements. 
The port interface must remain the same. 

11: Design the traffic signal controller discussed in this chapter by using if and 
else statements. 

12: Using a case statement, design an 8-function ALU that takes 4-bit inputs a and 
b and a 3-bit input signal select, and gives a 5-bit output out. The ALU 
implements the following functions based on a 3-bit input signal select. Ignore 
any overflow or underflow bits. 
  
 
Select Signal Function 

3'b000 out = a 

3'b001 out = a + b 

3'b010 out = a - b 

3'b011 out = a / b 

3'b100 out = a % b (remainder) 

3'b101 out = a << 1 

3'b110 out = a >> 1 

3'b111 out = (a > b) (magnitude compare) 

13: Using a while loop, design a clock generator. Initial value of clock is 0. Time 
period for the clock is 10. 
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14: Using the for loop, initialize locations 0 to 1023 of a 4-bit register array 
cache_var to 0. 

15: Using a forever statement, design a clock with time period = 10 and duty cycle 
= 40%. Initial value of clock is 0. 

16: Using the repeat loop, delay the statement a = a + 1 by 20 positive edges of 
clock. 

17: Below is a block with nested sequential and parallel blocks. When does the 
block finish and what is the order of execution of events? At what simulation 
times does each statement finish execution? 
  
initial 
begin 
        x = 1'b0; 
        #5 y = 1'b1; 
        fork 
                 #20 a = x; 
                 #15 b = y; 
        join 
        #40 x = 1'b1; 
        fork 
                #10 p = x; 
                begin 
                        #10 a = y; 
                        #30 b = x; 
                end 
                #5 m = y; 
        join 
end 
 

18: Design an 8-bit counter by using a forever loop, named block, and disabling of 
named block. The counter starts counting at count = 5 and finishes at count = 
67. The count is incremented at positive edge of clock. The clock has a time 
period of 10. The counter counts through the loop only once and then is 
disabled. (Hint: Use the disable statement.) 
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Chapter 8. Tasks and Functions 
  
 
A designer is frequently required to implement the same functionality at many places in a 
behavioral design. This means that the commonly used parts should be abstracted into 
routines and the r outines must be invoked instead of repeating the code. Most 
programming languages provide procedures or subroutines to accomplish this. Verilog 
provides tasks and functions to break up large behavioral designs into smaller pieces. 
Tasks and functions allow the designer to abstract Verilog code that is used at many 
places in the design. 
  
 
Tasks have input, output, and inout arguments; functions have input arguments. Thus, 
values can be passed into and out from tasks and functions. Considering the analogy of 
FORTRAN, tasks are similar to SUBROUTINE and functions are similar to 
FUNCTION. 
  
 
Tasks and functions are included in the design hierarchy. Like named blocks, tasks or 
functions can be addressed by means of hierarchical names. 
  
 
Learning Objectives 
  

• Describe the differences between tasks and functions. 
 

• Identify the conditions required for tasks to be defined. Understand task 
declaration and invocation. 

 
• Explain the conditions necessary for functions to be defined. Understand function 

declaration and invocation. 
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8.1 Differences between Tasks and Functions 
  
 
Tasks and functions serve different purposes in Verilog. We discuss tasks and functions 
in greater detail in the following sections. However, first it is important to understand 
differences between tasks and functions, as outlined in Table 8-1. 
  
 
Table 8-1. Tasks and Functions 
Functions Tasks 

A function can enable another function 
but not another task. 

A task can enable other tasks and functions. 

Functions always execute in 0 
simulation time. 

Tasks may execute in non-zero simulation 
time. 

Functions must not contain any delay, 
event, or timing control statements. 

Tasks may contain delay, event, or timing 
control statements. 

Functions must have at least one input 
argument. They can have more than one 
input. 

Tasks may have zero or more arguments of 
type input, output, or inout. 

unctions always return a single value. 
They cannot have output or inout 
arguments. 

Tasks do not return with a value, but can 
pass multiple values through output and 
inout arguments. 

 
Both tasks and functions must be defined in a module and are local to the module. Tasks 
are used for common Verilog code that contains delays, timing, event constructs, or 
multiple output arguments. Functions are used when common Verilog code is purely 
combinational, executes in zero simulation time, and provides exactly one output. 
Functions are typically used for conversions and commonly used calculations. 
  
 
Tasks can have input, output, and inout arguments; functions can have input arguments. 
In addition, they can have local variables, registers, time variables, integers, real, or 
events. Tasks or functions cannot have wires. Tasks and functions contain behavioral 
statements only. Tasks and functions do not contain always or initial statements but are 
called from always blocks, initial blocks, or other tasks and functions. 
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8.2 Tasks 
  
 
Tasks are declared with the keywords task and endtask. Tasks must be used if any one of 
the following conditions is true for the procedure: 
  

• There are delay, timing, or event control constructs in the procedure. 
 

• The procedure has zero or more than one output arguments. 
 

• The procedure has no input arguments. 
  
8.2.1 Task Declaration and Invocation 
  
 
Task declaration and task invocation syntax are as follows. 
  
Example 8-1 Syntax for Tasks 
  
task_declaration ::= 
            task [ automatic ] task_identifier ; 
            { task_item_declaration } 
            statement 
            endtask 
          | task [ automatic ] task_identifier ( task_port_list ) ; 
            { block_item_declaration } 
            statement 
            endtask 
 
task_item_declaration ::= 
          block_item_declaration 
        | { attribute_instance } tf_input_declaration ; 
        | { attribute_instance } tf_output_declaration ; 
        | { attribute_instance } tf_inout_declaration ; 
task_port_list ::= task_port_item { , task_port_item } 
task_port_item ::= 
          { attribute_instance } tf_input_declaration 
        | { attribute_instance } tf_output_declaration 
        | { attribute_instance } tf_inout_declaration 
tf_input_declaration  ::= 
           input [ reg ] [ signed ] [ range ] list_of_port_identifiers 
        |  input [ task_port_type ] list_of_port_identifiers 
tf_output_declaration ::= 
            output [ reg ] [ signed ] [ range ] 
list_of_port_identifiers 
        |  output [ task_port_type ] list_of_port_identifiers 
tf_inout_declaration  ::= 
            inout [ reg ] [ signed ] [ range ] list_of_port_identifiers
        |  inout [ task_port_type ] list_of_port_identifiers 
task_port_type ::= 
            time | real | realtime | integer 
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I/O declarations use keywords input, output, or inout, based on the type of argument 
declared. Input and inout arguments are passed into the task. Input arguments are 
processed in the task statements. Output and inout argument values are passed back to the 
variables in the task invocation statement when the task is completed. Tasks can invoke 
other tasks or functions. 
  
 
Although the keywords input, inout, and output used for I/O arguments in a task are the 
same as the keywords used to declare ports in modules, there is a difference. Ports are 
used to connect external signals to the module. I/O arguments in a task are used to pass 
values to and from the task. 
  
8.2.2 Task Examples 
  
 
We discuss two examples of tasks. The first example illustrates the use of input and 
output arguments in tasks. The second example models an asymmetric sequence 
generator that generates an asymmetric sequence on the clock signal. 
  
Use of input and output arguments 
  
 
Example 8-2 illustrates the use of input and output arguments in tasks. Consider a task 
called bitwise_oper, which computes the bitwise and, bitwise or, and bitwise ex-or of two 
16-bit numbers. The two 16-bit numbers a and b are inputs and the three outputs are 16-
bit numbers ab_and, ab_or, ab_xor. A parameter delay is also used in the task. 
  
Example 8-2 Input and Output Arguments in Tasks 
  
//Define a module called operation that contains the task bitwise_oper 
module operation; 
... 
... 
parameter delay = 10; 
reg [15:0] A, B; 
reg [15:0] AB_AND, AB_OR, AB_XOR; 
 
always @(A or B) //whenever A or B changes in value 
begin 
        //invoke the task bitwise_oper. provide 2 input arguments A, B 
        //Expect 3 output arguments AB_AND, AB_OR, AB_XOR 
       //The arguments must be specified in the same order as they 
       //appear in the task declaration. 
        bitwise_oper(AB_AND, AB_OR, AB_XOR, A, B); 
end 
... 
... 
//define task bitwise_oper 
task bitwise_oper; 
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output [15:0] ab_and, ab_or, ab_xor; //outputs from the task 
input [15:0] a, b; //inputs to the task 
begin 
        #delay ab_and = a & b; 
        ab_or = a | b; 
        ab_xor = a ^ b; 
end 
endtask 
... 
endmodule 
  
 
In the above task, the input values passed to the task are A and B. Hence, when the task is 
entered, a = A and b = B. The three output values are computed after a delay. This delay 
is specified by the parameter delay, which is 10 units for this example. When the task is 
completed, the output values are passed back to the calling output arguments. Therefore, 
AB_AND = ab_and, AB_OR = ab_or, and AB_XOR = ab_xor when the task is 
completed. 
  
 
Another method of declaring arguments for tasks is the ANSI C style. Example 8-3 
shows the bitwise_oper task defined with an ANSI C style argument declaration. 
  
Example 8-3 Task Definition using ANSI C Style Argument Declaration 
  
//define task bitwise_oper 
task bitwise_oper (output [15:0] ab_and, ab_or, ab_xor, 
                   input [15:0] a, b); 
begin 
        #delay ab_and = a & b; 
        ab_or = a | b; 
        ab_xor = a ^ b; 
end 
endtask 
  
Asymmetric Sequence Generator 
  
 
Tasks can directly operate on reg variables defined in the module. Example 8-4 directly 
operates on the reg variable clock to continuously produce an asymmetric sequence. The 
clock is initialized with an initialization sequence. 
  
Example 8-4 Direct Operation on reg Variables 
  
//Define a module that contains the task asymmetric_sequence 
module sequence; 
... 
reg clock; 
... 
initial 
        init_sequence; //Invoke the task init_sequence 
... 
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always 
begin 
        asymmetric_sequence; //Invoke the task asymmetric_sequence 
end 
... 
... 
//Initialization sequence 
task init_sequence; 
begin 
        clock = 1'b0; 
end 
endtask 
 
//define task to generate asymmetric sequence 
//operate directly on the clock defined in the module. 
task asymmetric_sequence; 
begin 
        #12 clock = 1'b0; 
        #5 clock = 1'b1; 
        #3 clock = 1'b0; 
        #10 clock = 1'b1; 
end 
endtask 
... 
... 
endmodule 
  
8.2.3 Automatic (Re-entrant) Tasks 
  
 
Tasks are normally static in nature. All declared items are statically allocated and they are 
shared across all uses of the task executing concurrently. Therefore, if a task is called 
concurrently from two places in the code, these task calls will operate on the same task 
variables. It is highly likely that the results of such an operation will be incorrect. 
  
 
To avoid this problem, a keyword automatic is added in front of the task keyword to 
make the tasks re-entrant. Such tasks are called automatic tasks. All items declared inside 
automatic tasks are allocated dynamically for each invocation. Each task call operates in 
an independent space. Thus, the task calls operate on independent copies of the task 
variables. This results in correct operation. It is recommended that automatic tasks be 
used if there is a chance that a task might be called concurrently from two locations in the 
code. 
  
 
Example 8-5 shows how an automatic task is defined and used. 
  
Example 8-5 Re-entrant (Automatic) Tasks 
  
// Module that contains an automatic (re-entrant) task 
// Only a small portion of the module that contains the task definition
// is shown in this example. There are two clocks. 
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// clk2 runs at twice the frequency of clk and is synchronous 
// with clk. 
module top; 
reg [15:0] cd_xor, ef_xor; //variables in module top 
reg [15:0] c, d, e, f; //variables in module top 
- 
task automatic bitwise_xor; 
output [15:0] ab_xor; //output from the task 
input [15:0] a, b; //inputs to the task 
begin 
    #delay ab_and = a & b; 
    ab_or = a | b; 
    ab_xor = a ^ b; 
end 
endtask 
... 
- 
// These two always blocks will call the bitwise_xor task 
// concurrently at each positive edge of clk. However, since 
// the task is re-entrant, these concurrent calls will work correctly. 
always @(posedge clk) 
    bitwise_xor(ef_xor, e, f); 
- 
always @(posedge clk2) // twice the frequency as the previous block 
    bitwise_xor(cd_xor, c, d); 
- 
- 
endmodule 
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8.3 Functions 
  
 
Functions are declared with the keywords function and endfunction. Functions are used if 
all of the following conditions are true for the procedure: 
  

• There are no delay, timing, or event control constructs in the procedure. 
 

• The procedure returns a single value. 
 

• There is at least one input argument. 
 

• There are no output or inout arguments. 
 

• There are no nonblocking assignments. 
  
8.3.1 Function Declaration and Invocation 
  
 
The syntax for functions is follows: 
  
Example 8-6 Syntax for Functions 
  
function_declaration ::= 
            function [ automatic ] [ signed ] [ range_or_type ] 
            function_identifier ; 
            function_item_declaration { function_item_declaration } 
            function_statement 
            endfunction 
           | function [ automatic ] [ signed ] [ range_or_type ] 
            function_identifier (function_port_list ) ; 
            block_item_declaration { block_item_declaration } 
            function_statement 
            endfunction 
function_item_declaration ::= 
          block_item_declaration 
        | tf_input_declaration ; 
function_port_list ::= { attribute_instance } tf_input_declaration {, 
                       { attribute_instance } tf_input_declaration } 
range_or_type ::= range | integer | real | realtime | time 
  
 
There are some peculiarities of functions. When a function is declared, a register with 
name function_identifer is declared implicitly inside Verilog. The output of a function is 
passed back by setting the value of the register function_identifer appropriately. The 
function is invoked by specifying function name and input arguments. At the end of 
function execution, the return value is placed where the function was invoked. The 
optional range_or_type specifies the width of the internal register. If no range or type is 
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specified, the default bit width is 1. Functions are very similar to FUNCTION in 
FORTRAN. 
  
Notice that at least one input argument must be defined for a function. There are no 
output arguments for functions because the implicit register function_identifer contains 
the output value. Also, functions cannot invoke other tasks. They can invoke only other 
functions. 
  
8.3.2 Function Examples 
  
 
We will discuss two examples. The first example models a parity calculator that returns a 
1-bit value. The second example models a 32-bit left/right shift register that returns a 32-
bit shifted value. 
  
Parity calculation 
  
 
Let us discuss a function that calculates the parity of a 32-bit address and returns the 
value. We assume even parity. Example 8-7 shows the definition and invocation of the 
function calc_parity. 
  
Example 8-7 Parity Calculation 
  
//Define a module that contains the function calc_parity 
module parity; 
... 
reg [31:0] addr; 
reg parity; 
 
//Compute new parity whenever address value changes 
always @(addr) 
begin 
        parity = calc_parity(addr); //First invocation of calc_parity 
        $display("Parity calculated = %b", calc_parity(addr) ); 
                                    //Second invocation of calc_parity 
end 
... 
... 
//define the parity calculation function 
function calc_parity; 
input [31:0] address; 
begin 
        //set the output value appropriately. Use the implicit 
        //internal register calc_parity. 
        calc_parity = ^address; //Return the xor of all address bits. 
end 
endfunction 
... 
... 
endmodule 
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 Note that in the first invocation of calc_parity, the returned value was used to set the reg 
parity. In the second invocation, the value returned was directly used inside the $display 
task. Thus, the returned value is placed wherever the function was invoked. 
  
 
Another method of declaring arguments for functions is the ANSI C style. Example 8-8 
shows the calc_parity function defined with an ANSI C style argument declaration. 
  
Example 8-8 Function Definition using ANSI C Style Argument Declaration 
  
//define the parity calculation function using ANSI C Style arguments 
function calc_parity (input [31:0] address); 
begin 
        //set the output value appropriately. Use the implicit 
        //internal register calc_parity. 
        calc_parity = ^address; //Return the xor of all address bits. 
end 
endfunction 
  
Left/right shifter 
  
 
To illustrate how a range for the output value of a function can be specified, let us 
consider a function that shifts a 32-bit value to the left or right by one bit, based on a 
control signal. Example 8-9 shows the implementation of the left/right shifter. 
  
Example 8-9 Left/Right Shifter 
  
//Define a module that contains the function shift 
module shifter; 
... 
//Left/right shifter 
`define LEFT_SHIFT      1'b0 
`define RIGHT_SHIFT     1'b1 
reg [31:0] addr, left_addr, right_addr; 
reg control; 
 
//Compute the right- and left-shifted values whenever 
//a new address value appears 
always @(addr) 
begin 
        //call the function defined below to do left and right shift. 
         left_addr = shift(addr, `LEFT_SHIFT); 
         right_addr = shift(addr, `RIGHT_SHIFT); 
end 
... 
... 
//define shift function. The output is a 32-bit value. 
function [31:0] shift; 
input [31:0] address; 
input control; 
begin 
        //set the output value appropriately based on a control signal.
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        shift = (control == `LEFT_SHIFT) ?(address << 1) : (address >> 
1); 
 
end 
endfunction 
... 
... 
endmodule 
  
8.3.3 Automatic (Recursive) Functions 
  
 
Functions are normally used non-recursively . If a function is called concurrently from 
two locations, the results are non-deterministic because both calls operate on the same 
variable space. 
  
 
However, the keyword automatic can be used to declare a recursive (automatic) function 
where all function declarations are allocated dynamically for each recursive calls. Each 
call to an automatic function operates in an independent variable space.Automatic 
function items cannot be accessed by hierarchical references. Automatic functions can be 
invoked through the use of their hierarchical name. 
  
 
Example 8-10 shows how an automatic function is defined to compute a factorial. 
  
Example 8-10 Recursive (Automatic) Functions 
  
//Define a factorial with a recursive function 
module top; 
... 
// Define the function 
function automatic integer factorial; 
input [31:0] oper; 
integer i; 
begin 
if (operand >= 2) 
   factorial = factorial (oper -1) * oper; //recursive call 
else 
   factorial = 1 ; 
end 
endfunction 
 
// Call the function 
integer result; 
initial 
begin 
     result = factorial(4); // Call the factorial of 7 
     $display("Factorial of 4 is %0d", result); //Displays 24 
end 
... 
... 
endmodule 
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8.3.4 Constant Functions 
  
 
A constant function[1] is a regular Verilog HDL function, but with certain restrictions. 
These functions can be used to reference complex values and can be used instead of 
constants. 
 
[1] See IEEE Standard Verilog Hardware Description Language document for details on 
constant function restrictions. 
  
 
Example 8-11 shows how a constant function can be used to compute the width of the 
address bus in a module. 
  
Example 8-11 Constant Functions 
  
//Define a RAM model 
module ram (...); 
parameter RAM_DEPTH = 256; 
input [clogb2(RAM_DEPTH)-1:0] addr_bus; //width of bus computed 
                                        //by calling constant 
                                        //function defined below 
                                        //Result of clogb2 = 8 
                                        //input [7:0] addr_bus; 
-- 
-- 
//Constant function 
function integer clogb2(input integer depth); 
begin 
   for(clogb2=0; depth >0; clogb2=clogb2+1) 
      depth = depth >> 1; 
end 
endfunction 
-- 
-- 
endmodule 
  
8.3.5 Signed Functions 
  
 
Signed functions allow signed operations to be performed on the function return values. 
Example 8-12 shows an example of a signed function. 
  
Example 8-12 Signed Functions 
  
module top; 
-- 
//Signed function declaration 
//Returns a 64 bit signed value 
function signed [63:0] compute_signed(input [63:0] vector); 
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-- 
-- 
endfunction 
-- 
//Call to the signed function from the higher module 
if(compute_signed(vector) < -3) 
begin 
-- 
end 
 
-- 
endmodule 
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8.4 Summary 
  
 
In this chapter, we discussed tasks and functions used in behavior Verilog modeling. 
  

• Tasks and functions are used to define common Verilog functionality that is used 
at many places in the design. Tasks and functions help to make a module 
definition more readable by breaking it up into manageable subunits. Tasks and 
functions serve the same purpose in Verilog as subroutines do in C. 

 
• Tasks can take any number of input, inout, or output arguments. Delay, event, or 

timing control constructs are permitted in tasks. Tasks can enable other tasks or 
functions. 

 
• Re-entrant tasks defined with the keyword automatic allow each task call to 

operate in an independent space. Therefore, re-entrant tasks work correctly even 
with concurrent tasks calls. 

 
• Functions are used when exactly one return value is required and at least one 

input argument is specified. Delay, event, or timing control constructs are not 
permitted in functions. Functions can invoke other functions but cannot invoke 
other tasks. 

 
• A register with name as the function name is declared implicitly when a function 

is declared. The return value of the function is passed back in this register. 
 

• Recursive functions defined with the keyword automatic allow each function call 
to operate in an independent space. Therefore, recursive or concurrent calls to 
such functions will work correctly. 

 
• Tasks and functions are included in a design hierarchy and can be addressed by 

hierarchical name referencing. 
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8.5 Exercises 
  
 

1: Define a function to calculate the factorial of a 4-bit number. The output is a 32-
bit value. Invoke the function by using stimulus and check results. 

2: Define a function to multiply two 4-bit numbers a and b. The output is an 8-bit 
value. Invoke the function by using stimulus and check results. 

3: Define a function to design an 8-function ALU that takes two 4-bit numbers a 
and b and computes a 5-bit result out based on a 3-bit select signal. Ignore 
overflow or underflow bits. 
  
 
Select Signal Function Output 

3'b000 a 

3'b001 a + b 

3'b010 a - b 

3'b011 a / b 

3'b100 a % 1 (remainder) 

3'b101 a << 1 

3'b110 a >> 1 

3'b111 (a > b) (magnitude compare)
 

4: Define a task to compute the factorial of a 4-bit number. The output is a 32-bit 
value. The result is assigned to the output after a delay of 10 time units. 

5: Define a task to compute even parity of a 16-bit number. The result is a 1-bit 
value that is assigned to the output after three positive edges of clock. (Hint: 
Use a repeat loop in the task.) 

6: Using named events, tasks, and functions, design the traffic signal controller in 
Traffic Signal Controller on page 160. 
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Chapter 9. Useful Modeling Techniques 
  
 
We learned the basic features of Verilog in the preceding chapters. In this chapter. we 
will discuss additional features that enhance the Verilog language, making it powerful 
and flexible for modeling and analyzing a design. 
  
 
Learning Objectives 
  

• Describe procedural continuous assignment statements assign, deassign, force, 
and release. Explain their significance in modeling and debugging. 

 
• Understand how to override parameters by using the defparam statement at the 

time of module instantiation. 
 

• Explain conditional compilation and execution of parts of the Verilog description.
 

• Identify system tasks for file output, displaying hierarchy, strobing, random 
number generation, memory initialization, and value change dump. 
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9.1 Procedural Continuous Assignments 
  
 
We studied procedural assignments in Section 7.2, Procedural Assignments. Procedural 
assignments assign a value to a register. The value stays in the register until another 
procedural assignment puts another value in that register. Procedural continuous 
assignments behave differently. They are procedural statements which allow values of 
expressions to be driven continuously onto registers or nets for limited periods of time. 
Procedural continuous assignments override existing assignments to a register or net. 
They provide an useful extension to the regular procedural assignment statement. 
  
9.1.1 assign and deassign 
  
 
The keywords assign and deassign are used to express the first type of procedural 
continuous assignment. The left-hand side of procedural continuous assignments can be 
only be a register or a concatenation of registers. It cannot be a part or bit select of a net 
or an array of registers. Procedural continuous assignments override the effect of regular 
procedural assignments. Procedural continuous assignments are normally used for 
controlled periods of time. 
  
 
A simple example is the negative edge-triggered D-flipflop with asynchronous reset that 
we modeled in Example 6-8. In Example 9-1, we now model the same D_FF, using 
assign and deassign statements. 
  
Example 9-1 D-Flipflop with Procedural Continuous Assignments 
  
// Negative edge-triggered D-flipflop with asynchronous reset 
module edge_dff(q, qbar, d, clk, reset); 
 
// Inputs and outputs 
output q,qbar; 
input d, clk, reset; 
reg q, qbar; //declare q and qbar are registers 
 
always @(negedge clk) //assign value of q & qbar at active edge of 
clock. 
begin 
        q = d; 
        qbar = ~d; 
end 
 
always @(reset) //Override the regular assignments to q and qbar 
                 //whenever reset goes high. Use of procedural 
continuous 
                 //assignments. 
        if(reset) 
        begin  //if reset is high, override regular assignments to q 
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with 
                //the new values, using procedural continuous 
assignment. 
                assign q = 1'b0; 
                assign qbar = 1'b1; 
        end 
        else 
        begin   //If reset goes low, remove the overriding values by 
                //deassigning the registers. After this the regular 
                //assignments q = d and qbar = ~d will be able to 
change 
               //the registers on the next negative edge of clock. 
                deassign q; 
                deassign qbar; 
        end 
 
endmodule 
  
 
In Example 9-1, we overrode the assignment on q and qbar and assigned new values to 
them when the reset signal went high. The register variables retain the continuously 
assigned value after the deassign until they are changed by a future procedural 
assignment. The assign and deassign constructs are now considered to be a bad coding 
style and it is recommended that alternative styles be used in Verilog HDL code. 
  
9.1.2 force and release 
  
 
Keywords force and release are used to express the second form of the procedural 
continuous assignments. They can be used to override assignments on both registers and 
nets. force and release statements are typically used in the interactive debugging process, 
where certain registers or nets are forced to a value and the effect on other registers and 
nets is noted. It is recommended that force and release statements not be used inside 
design blocks. They should appear only in stimulus or as debug statements. 
  
force and release on registers 
  
 
A force on a register overrides any procedural assignments or procedural continuous 
assignments on the register until the register is released. The register variables will 
continue to store the forced value after being released, but can then be changed by a 
future procedural assignment. To override the values of q and qbar in Example 9-1 for a 
limited period of time, we could do the following: 
  
module stimulus; 
... 
... 
//instantiate the d-flipflop 
edge_dff dff(Q, Qbar, D, CLK, RESET); 
... 
... 
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initial 
begin 
    //these statements force value of 1 on dff.q between time 50 and 
     //100, regardless of the actual output of the edge_dff. 
    #50 force dff.q = 1'b1; //force value of q to 1 at time 50. 
    #50 release dff.q;  //release the value of q at time 100. 
end 
... 
... 
endmodule 
  
force and release on nets 
  
 
force on nets overrides any continuous assignments until the net is released. The net will 
immediately return to its normal driven value when it is released. A net can be forced to 
an expression or a value. 
  
module top; 
... 
... 
assign out = a & b & c; //continuous assignment on net out 
... 
initial 
   #50 force out = a | b & c; 
   #50 release out; 
end 
... 
... 
endmodule 
  
 
In the example above, a new expression is forced on the net from time 50 to time 100. 
From time 50 to time 100, when the force statement is active, the expression a | b & c will
be re-evaluated and assigned to out whenever values of signals a or b or c change. Thus, 
the force statement behaves like a continuous assignment except that it is active for only 
a limited period of time. 
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9.2 Overriding Parameters 
  
 
Parameters can be defined in a module definition, as was discussed earlier in Section 
3.2.8, Parameters. However, during compilation of Verilog modules, parameter values 
can be altered separately for each module instance. This allows us to pass a distinct set of 
parameter values to each module during compilation regardless of predefined parameter 
values. 
  
 
There are two ways to override parameter values: through the defparam statement or 
through module instance parameter value assignment. 
  
9.2.1 defparam Statement 
  
 
Parameter values can be changed in any module instance in the design with the keyword 
defparam. The hierarchical name of the module instance can be used to override 
parameter values. Consider Example 9-2, which uses defparam to override the parameter 
values in module instances. 
  
Example 9-2 Defparam Statement 
  
//Define a module hello_world 
module hello_world; 
parameter id_num = 0; //define a module identification number = 0 
 
initial //display the module identification number 
        $display("Displaying hello_world id number = %d", id_num); 
endmodule 
 
 
//define top-level module 
module top; 
//change parameter values in the instantiated modules 
//Use defparam statement 
defparam w1.id_num = 1, w2.id_num = 2; 
 
//instantiate two hello_world modules 
hello_world w1(); 
hello_world w2(); 
 
endmodule 
  
 
In Example 9-2, the module hello_world was defined with a default id_num = 0. 
However, when the module instances w1 and w2 of the type hello_world are created, 
their id_num values are modified with the defparam statement. If we simulate the above 
design, we would get the following output: 
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Displaying hello_world id number = 1 
Displaying hello_world id number = 2 
  
 
Multiple defparam statements can appear in a module. Any parameter can be overridden 
with the defparam statement. The defparam construct is now considered to be a bad 
coding style and it is recommended that alternative styles be used in Verilog HDL code. 
  
 
Note that the module hello_world can also be defined using an ANSI C style parameter 
declaration. Figure 9-3 shows the ANSI C style parameter declaration for the module 
hello_world. 
  
Example 9-3 ANSI C Style Parameter Declaration 
  
//Define a module hello_world 
module hello_world #(parameter id_num = 0) ;//ANSI C Style Parameter 
 
initial //display the module identification number 
        $display("Displaying hello_world id number = %d", id_num); 
endmodule 
  
9.2.2 Module_Instance Parameter Values 
  
 
Parameter values can be overridden when a module is instantiated. To illustrate this, we 
will use Example 9-2 and modify it a bit. The new parameter values are passed during 
module instantiation. The top-level module can pass parameters to the instances w1 and 
w2, as shown below. Notice that defparam is not needed. The simulation output will be 
identical to the output obtained with the defparam statement. 
  
//define top-level module 
module top; 
 
//instantiate two hello_world modules; pass new parameter values 
//Parameter value assignment by ordered list 
hello_world #(1) w1; //pass value 1 to module w1 
 
//Parameter value assignment by name 
hello_world #(.id_num(2)) w2; //pass value 2 to id_num parameter 
                              //for module w2 
 
endmodule 
  
 
If multiple parameters are defined in the module, during module instantiation, they can be 
overridden by specifying the new values in the same order as the parameter declarations 
in the module. If an overriding value is not specified, the default parameter declaration 
values are taken. Alternately, one can override specific values by naming the parameters 
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and the corresponding values. This is called parameter value assignment by name. 
Consider Example 9-4. 
  
Example 9-4 Module Instance Parameter Values 
  
//define module with delays 
module bus_master; 
parameter delay1 = 2; 
parameter delay2 = 3; 
parameter delay3 = 7; 
... 
<module internals> 
... 
endmodule 
 
//top-level module; instantiates two bus_master modules 
module top; 
 
//Instantiate the modules with new delay values 
 
//Parameter value assignment by ordered list 
bus_master #(4, 5, 6) b1(); //b1: delay1 = 4, delay2 = 5, delay3 = 6 
bus_master #(9, 4) b2(); //b2: delay1 = 9, delay2 = 4, delay3 = 
7(default) 
 
//Parameter value assignment by name 
bus_master #(.delay2(4), delay3(7)) b3(); //b2: delay2 = 4, delay3 = 7 
                                          //delay1=2 (default) 
// It is recommended to use the parameter value assignment by name 
// This minimizes the chance of error and parameters can be added 
// or deleted without worrying about the order. 
 
endmodule 
  
 
Module-instance parameter value assignment is a very useful method used to override 
parameter values and to customize module instances. 
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9.3 Conditional Compilation and Execution 
  
 
A portion of Verilog might be suitable for one environment but not for another. The 
designer does not wish to create two versions of Verilog design for the two environments. 
Instead, the designer can specify that the particular portion of the code be compiled only 
if a certain flag is set. This is called conditional compilation. 
  
 
A designer might also want to execute certain parts of the Verilog design only when a 
flag is set at run time. This is called conditional execution. 
  
9.3.1 Conditional Compilation 
  
 
Conditional compilation can be accomplished by using compiler directives `ifdef, `ifndef, 
`else, `elsif, and `endif. Example 9-5 contains Verilog source code to be compiled 
conditionally. 
  
Example 9-5 Conditional Compilation 
  
//Conditional Compilation 
//Example 1 
'ifdef TEST //compile module test only if text macro TEST is defined 
module test; 
... 
... 
endmodule 
'else //compile the module stimulus as default 
module stimulus; 
... 
... 
endmodule 
'endif //completion of 'ifdef directive 
 
//Example 2 
module top; 
 
bus_master b1(); //instantiate module unconditionally 
'ifdef ADD_B2 
   bus_master b2(); //b2 is instantiated conditionally if text macro 
                    //ADD_B2 is defined 
'elsif ADD_B3 
   bus_master b3(); //b3 is instantiated conditionally if text macro 
                    //ADD_B3 is defined 
'else 
   bus_master b4(); //b4 is instantiate by default 
'endif 
 
'ifndef IGNORE_B5 
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   bus_master b5(); //b5 is instantiated conditionally if text macro 
                    //IGNORE_B5 is not defined 
'endif 
endmodule 
  
 
The `ifdef and `ifndef directives can appear anywhere in the design. A designer can 
conditionally compile statements, modules, blocks, declarations, and other compiler 
directives. The `else directive is optional. A maximum of one `else directive can 
accompany an `ifdef or `ifndef. Any number of `elsif directives can accompany an `ifdef 
or `ifndef. An `ifdef or `ifndef is always closed by a corresponding `endif. 
  
 
The conditional compile flag can be set by using the `define statement inside the Verilog 
file. In the example above, we could define the flags by defining text macros TEST and 
ADD_B2 at compile time by using the `define statement. The Verilog compiler simply 
skips the portion if the conditional compile flag is not set. A Boolean expression, such as 
TEST && ADD_B2, is not allowed with the `ifdef statement. 
  
9.3.2 Conditional Execution 
  
 
Conditional execution flags allow the designer to control statement execution flow at run 
time. All statements are compiled but executed conditionally. Conditional execution flags 
can be used only for behavioral statements. The system task keyword $test$plusargs is 
used for conditional execution. 
  
 
Consider Example 9-6, which illustrates conditional execution with $test$plusargs. 
  
Example 9-6 Conditional Execution with $test$plusargs 
  
//Conditional execution 
module test; 
... 
... 
initial 
begin 
   if($test$plusargs("DISPLAY_VAR")) 
       $display("Display = %b ", {a,b,c} ); //display only if flag is 
set 
   else 
//Conditional execution 
       $display("No Display"); //otherwise no display 
end 
endmodule 
  
 
The variables are displayed only if the flag DISPLAY_VAR is set at run time. Flags can 
be set at run time by specifying the option +DISPLAY_VAR at run time. 
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Conditional execution can be further controlled by using the system task keyword 
$value$plusargs. This system task allows testing for arguments to an invocation option. 
$value$plusargs returns a 0 if a matching invocation was not found and non-zero if a 
matching option was found. Example 9-7 shows an example of $value$plusargs. 
  
Example 9-7 Conditional Execution with $value$plusargs 
  
//Conditional execution with $value$plusargs 
module test; 
reg [8*128-1:0] test_string; 
integer clk_period; 
... 
... 
initial 
begin 
   if($value$plusargs("testname=%s", test_string)) 
       $readmemh(test_string, vectors); //Read test vectors 
   else 
       //otherwise display error message 
       $display("Test name option not specified"); 
 
   if($value$plusargs("clk_t=%d", clk_period)) 
       forever #(clk_period/2) clk = ~clk; //Set up clock 
   else 
       //otherwise display error message 
       $display("Clock period option name not specified"); 
 
end 
 
//For example, to invoke the above options invoke simulator with 
//+testname=test1.vec +clk_t=10 
//Test name = "test1.vec" and clk_period = 10 
endmodule 
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9.4 Time Scales 
  
 
Often, in a single simulation, delay values in one module need to be defined by using 
certain time unit, e.g., 1  s, and delay values in another module need to be defined by 
using a different time unit, e.g. 100 ns. Verilog HDL allows the reference time unit for 
modules to be specified with the `timescale compiler directive. 
  
 
Usage: `timescale <reference_time_unit> / <time_precision> 
  
 
The <reference_time_unit> specifies the unit of measurement for times and delays. The 
<time_precision> specifies the precision to which the delays are rounded off during 
simulation. Only 1, 10, and 100 are valid integers for specifying time unit and time 
precision. Consider the two modules, dummy1 and dummy2, in Example 9-8. 
  
Example 9-8 Time Scales 
  
//Define a time scale for the module dummy1 
//Reference time unit is 100 nanoseconds and precision is 1 ns 
`timescale 100 ns / 1 ns 
 
module dummy1; 
 
reg toggle; 
 
//initialize toggle 
initial 
  toggle = 1'b0; 
 
//Flip the toggle register every 5 time units 
//In this module 5 time units = 500 ns = .5 µs 
always #5 
    begin 
        toggle = ~toggle; 
        $display("%d , In %m toggle = %b ", $time, toggle); 
    end 
 
endmodule 
 
//Define a time scale for the module dummy2 
//Reference time unit is 1 microsecond and precision is 10 ns 
`timescale 1 us / 10 ns 
 
module dummy2; 
 
reg toggle; 
 
//initialize toggle 
initial 
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  toggle = 1'b0; 
 
//Flip the toggle register every 5 time units 
//In this module 5 time units = 5 µs  = 5000 ns 
always #5 
    begin 
        toggle = ~toggle; 
        $display("%d , In %m toggle = %b ", $time, toggle); 
    end 
 
endmodule 
  
 
The two modules dummy1 and dummy2 are identical in all respects, except that the time 
unit for dummy1 is 100 ns and the time unit for dummy2 is 1  s. Thus the $display 
statement in dummy1 will be executed 10 times for each $display executed in dummy2. 
The $time task reports the simulation time in terms of the reference time unit for the 
module in which it is invoked. The first few $display statements are shown in the 
simulation output below to illustrate the effect of the `timescale directive. 
  
              5 , In dummy1 toggle = 1 
            10 , In dummy1 toggle = 0 
            15 , In dummy1 toggle = 1 
            20 , In dummy1 toggle = 0 
            25 , In dummy1 toggle = 1 
            30 , In dummy1 toggle = 0 
            35 , In dummy1 toggle = 1 
            40 , In dummy1 toggle = 0 
            45 , In dummy1 toggle = 1 
-->           5 , In dummy2 toggle = 1 
            50 , In dummy1 toggle = 0 
            55 , In dummy1 toggle = 1 
  
 
Notice that the $display statement in dummy2 executes once for every ten $display 
statements in dummy1. 
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9.5 Useful System Tasks 
  
 
In this section, we discuss the system tasks that are useful for a variety of purposes in 
Verilog. We discuss system tasks [1] for file output, displaying hierarchy, strobing, 
random number generation, memory initialization, and value change dump. 
 
[1] Other system tasks such as $signed and $unsigned used for sign conversion are not 
discussed in this book. For details, please refer to the "IEEE Standard Verilog Hardware 
Description Language" document. 
  
9.5.1 File Output 
  
 
Output from Verilog normally goes to the standard output and the file verilog.log. It is 
possible to redirect the output of Verilog to a chosen file. 
  
Opening a file 
  
 
A file can be opened with the system task $fopen. 
  
 
Usage: $fopen("<name_of_file>"); [2] 
 
[2] The "IEEE Standard Verilog Hardware Description Language" document provides 
additional capabilities for $fopen. The $fopen syntax mentioned in this book is adequate 
for most purposes. However, if you need additional capabilities, please refer to the "IEEE 
Standard Verilog Hardware Description Language" document. 
  
 
Usage: <file_handle> = $fopen("<name_of_file>"); 
  
 
The task $fopen returns a 32-bit value called a multichannel descriptor.[3] Only one bit is 
set in a multichannel descriptor. The standard output has a multichannel descriptor with 
the least significant bit (bit 0) set. Standard output is also called channel 0. The standard 
output is always open. Each successive call to $fopen opens a new channel and returns a 
32-bit descriptor with bit 1 set, bit 2 set, and so on, up to bit 30 set. Bit 31 is reserved. 
The channel number corresponds to the individual bit set in the multichannel descriptor. 
Example 9-9 illustrates the use of file descriptors. 
 
[3] The "IEEE Standard Verilog Hardware Description Language" document provides a 
method for opening up to 230 files by using a single-channel file descriptor. Please refer 
to it for details. 
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Example 9-9 File Descriptors 
  
//Multichannel descriptor 
integer handle1, handle2, handle3; //integers are 32-bit values 
 
//standard output is open; descriptor = 32'h0000_0001 (bit 0 set) 
initial 
begin 
   handle1 = $fopen("file1.out"); //handle1 = 32'h0000_0002 (bit 1 set)
   handle2 = $fopen("file2.out"); //handle2 = 32'h0000_0004 (bit 2 set)
   handle3 = $fopen("file3.out"); //handle3 = 32'h0000_0008 (bit 3 set)
end 
  
 
The advantage of multichannel descriptors is that it is possible to selectively write to 
multiple files at the same time. This is explained below in greater detail. 
  
Writing to files 
  
 
The system tasks $fdisplay, $fmonitor, $fwrite, and $fstrobe are used to write to files.[4] 
Note that these tasks are similar in syntax to regular system tasks $display, $monitor, etc., 
but they provide the additional capability of writing to files. 
 
[4] The "IEEE Standard Verilog Hardware Description Language" document provides 
many additional capabilities for file output. The file output system tasks mentioned in this
book are adequate for most digital designers. However, if you need additional capabilities 
for file output, please refer to the IEEE Standard Verilog Hardware Description 
Language document. 
 
Systems tasks for reading files are also provided by the IEEE Standard Verilog Hardware 
Description Language. These system tasks include $fgetc, $ungetc, $fgetc, $fscanf, 
$sscanf, $fread, $ftell, $fseek, $rewind, and $fflush. However, most digital designers do 
not need these capabilities frequently. Therefore, they are not covered in this book. If you 
need to use the file reading capabilities, please refer to the "IEEE Standard Verilog 
Hardware Description Language" document. 
  
 
We will consider only $fdisplay and $fmonitor tasks. 
  
 
Usage: $fdisplay(<file_descriptor>, p1, p2 ..., pn); 

  $fmonitor(<file_descriptor>, p1, p2,..., pn); 

 
p1, p2,  , pn can be variables, signal names, or quoted strings.A file_descriptor is a 
multichannel descriptor that can be a file handle or a bitwise combination of file handles. 
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Verilog will write the output to all files that have a 1 associated with them in the file 
descriptor. We will use the file descriptors defined in Example 9-9 to illustrate the use of 
the $fdisplay and $fmonitor tasks. 
  
//All handles defined in Example 9-9 
//Writing to files 
integer desc1, desc2, desc3; //three file descriptors 
initial 
begin 
    desc1 = handle1 | 1; //bitwise or; desc1 = 32'h0000_0003 
    $fdisplay(desc1, "Display 1");//write to files file1.out & stdout 
 
    desc2 = handle2 | handle1; //desc2 = 32'h0000_0006 
    $fdisplay(desc2, "Display 2");//write to files file1.out & 
file2.out 
 
    desc3 = handle3 ; //desc3 = 32'h0000_0008 
    $fdisplay(desc3, "Display 3");//write to file file3.out only 
end 
  
Closing files 
  
Files can be closed with the system task $fclose. 
  
Usage: $fclose(<file_handle>); 
  
//Closing Files 
$fclose(handle1); 
  
A file cannot be written to once it is closed. The corresponding bit in the multichannel 
descriptor is set to 0. The next $fopen call can reuse the bit. 
  
9.5.2 Displaying Hierarchy 
  
Hierarchy at any level can be displayed by means of the %m option in any of the display 
tasks, $display, $write task, $monitor, or $strobe task, as discussed briefly in Section 4.3, 
Hierarchical Names. This is a very useful option. For example, when multiple instances 
of a module execute the same Verilog code, the %m option will distinguish from which 
module instance the output is coming. No argument is needed for the %m option in the 
display tasks. See Example 9-10. 
  
Example 9-10 Displaying Hierarchy 
  
//Displaying hierarchy information 
module M; 
... 
initial 
    $display("Displaying in %m"); 
endmodule 
 
//instantiate module M 
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module top; 
... 
M  m1(); 
M  m2(); 
//Displaying hierarchy information 
M  m3(); 
endmodule 
  
 
The output from the simulation will look like the following: 
  
Displaying in top.m1 
Displaying in top.m2 
Displaying in top.m3 
  
 
This feature can display full hierarchical names, including module instances, tasks, 
functions, and named blocks. 
  
9.5.3 Strobing 
  
 
Strobing is done with the system task keyword $strobe. This task is very similar to the 
$display task except for a slight difference. If many other statements are executed in the 
same time unit as the $display task, the order in which the statements and the $display 
task are executed is nondeterministic. If $strobe is used, it is always executed after all 
other assignment statements in the same time unit have executed. Thus, $strobe provides 
a synchronization mechanism to ensure that data is displayed only after all other 
assignment statements, which change the data in that time step, have executed. See 
Example 9-11. 
  
Example 9-11 Strobing 
  
//Strobing 
always @(posedge clock) 
begin 
   a = b; 
   c = d; 
end 
 
always @(posedge clock) 
   $strobe("Displaying a = %b, c = %b", a, c); // display values at 
posedge 
  
 
In Example 9-11, the values at positive edge of clock will be displayed only after 
statements a = b and c = d execute. If $display was used, $display might execute before 
statements a = b and c = d, thus displaying different values. 
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9.5.4 Random Number Generation 
  
 
Random number generation capabilities are required for generating a random set of test 
vectors. Random testing is important because it often catches hidden bugs in the design. 
Random vector generation is also used in performance analysis of chip architectures. The 
system task $random is used for generating a random number. 
  
 
 
Usage: 

 
$random; 

   
$random(<seed>); 

 
The value of <seed> is optional and is used to ensure the same random number sequence 
each time the test is run. The <seed> parameter can either be a reg, integer, or time 
variable. The task $random returns a 32-bit signed integer. All bits, bit-selects, or part-
selects of the 32-bit random number can be used (see Example 9-12). 
  
Example 9-12 Random Number Generation 
  
//Generate random numbers and apply them to a simple ROM 
module test; 
integer r_seed; 
reg [31:0] addr;//input to ROM 
wire [31:0] data;//output from ROM 
... 
... 
ROM rom1(data, addr); 
 
initial 
   r_seed = 2; //arbitrarily define the seed as 2. 
 
always @(posedge clock) 
   addr = $random(r_seed); //generates random numbers 
... 
<check output of ROM against expected results> 
... 
... 
endmodule 
  
 
The random number generator is able to generate signed integers. Therefore, depending 
on the way the $random task is used, it can generate positive or negative integers. 
Example 9-13 shows an example of such generation. 
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Example 9-13 Generation of Positive and Negative Numbers by $random Task 
  
reg [23:0] rand1, rand2; 
rand1 = $random % 60; //Generates a random number between -59 and 59 
rand2 = {$random} % 60; //Addition of concatenation operator to 
                       //$random generates a positive value between 
                       //0 and 59. 
  
 
Note that the algorithm used by $random is standardized. Therefore, the same simulation 
test run on different simulators will generate consistent random patterns for the same seed 
value. 
  
9.5.5 Initializing Memory from File 
  
 
We discussed how to declare memories in Section 3.2.7, Memories. Verilog provides a 
very useful system task to initialize memories from a data file. Two tasks are provided to 
read numbers in binary or hexadecimal format. Keywords $readmemb and $readmemh 
are used to initialize memories. 
  
 
Usage: $readmemb("<file_name>", <memory_name>); 

  $readmemb("<file_name>", <memory_name>, <start_addr>); 

  $readmemb("<file_name>", <memory_name>, 
<start_addr>,<finish_addr>); 

  Identical syntax for $readmemh. 

 
The <file_name> and <memory_name> are mandatory; <start_addr> and <finish_addr> 
are optional. Defaults are start index of memory array for <start_addr> and end of the 
data file or memory for <finish_addr>. Example 9-14 illustrates how memory is 
initialized. 
  
Example 9-14 Initializing Memory 
  
module test; 
 
reg [7:0] memory[0:7]; //declare an 8-byte memory 
integer i; 
 
initial 
begin 
  //read memory file init.dat. address locations given in memory 
  $readmemb("init.dat", memory); 
module test; 
  //display contents of initialized memory 
  for(i=0; i < 8; i = i + 1) 
    $display("Memory [%0d] = %b", i, memory[i]); 
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end 
 
endmodule 
  
 
The file init.dat contains the initialization data. Addresses are specified in the data file 
with @<address>. Addresses are specified as hexadecimal numbers. Data is separated by 
whitespaces. Data can contain x or z. Uninitialized locations default to x. A sample file, 
init.dat, is shown below. 
  
@002 
11111111 01010101 
00000000 10101010 
 
@006 
1111zzzz 00001111 
  
 
When the test module is simulated, we will get the following output: 
  
Memory [0] = xxxxxxxx 
Memory [1] = xxxxxxxx 
Memory [2] = 11111111 
Memory [3] = 01010101 
Memory [4] = 00000000 
Memory [5] = 10101010 
Memory [6] = 1111zzzz 
Memory [7] = 00001111 
  
9.5.6 Value Change Dump File 
  
 
A value change dump (VCD) is an ASCII file that contains information about simulation 
time, scope and signal definitions, and signal value changes in the simulation run. All 
signals or a selected set of signals in a design can be written to a VCD file during 
simulation. Postprocessing tools can take the VCD file as input and visually display 
hierarchical information, signal values, and signal waveforms. Many postprocessing tools 
as well as tools integrated into the simulator are now commercially available. For 
simulation of large designs, designers dump selected signals to a VCD file and use a 
postprocessing tool to debug, analyze, and verify the simulation output. The use of VCD 
file in the debug process is shown in Figure 9-1. 
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Figure 9-1. Debugging and Analysis of Simulation with VCD File 
  

 
 
System tasks are provided for selecting module instances or module instance signals to 
dump ($dumpvars), name of VCD file ($dumpfile), starting and stopping the dump 
process ($dumpon, $dumpoff), and generating checkpoints ($dumpall). The uses of each 
task are shown in Example 9-15. 
  
Example 9-15 VCD File System Tasks 
  
//specify name of VCD file. Otherwise,default name is 
//assigned by the simulator. 
initial 
        $dumpfile("myfile.dmp"); //Simulation info dumped to myfile.dmp
 
//Dump signals in a module 
initial 
   $dumpvars; //no arguments, dump all signals in the design 
initial 
   $dumpvars(1, top); //dump variables in module instance top. 
                //Number 1 indicates levels of hierarchy. Dump one 
                //hierarchy level below top, i.e., dump variables in 
top, 
                //but not signals in modules instantiated by top. 
initial 
    $dumpvars(2, top.m1);//dump up to 2 levels of hierarchy below 
top.m1 
initial 
    $dumpvars(0, top.m1);//Number 0 means dump the entire hierarchy 
                        // below top.m1 
 
//Start and stop dump process 
initial 
begin 
    $dumpon;             //start the dump process. 
    #100000 $dumpoff;  //stop the dump process after 100,000 time units
end 
 
//Create a checkpoint. Dump current value of all VCD variables 
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initial 
   $dumpall; 
  
 
The $dumpfile and $dumpvars tasks are normally specified at the beginning of the 
simulation. The $dumpon, $dumpoff, and $dumpall control the dump process during the 
simulation.[5] 
 
[5] Please refer to "IEEE Standard Verilog Hardware Description Language" document 
for details on additional tasks such as $dumpports, $dumpportsoff, $dumpportson, 
$dumpportsall, $dumpportslimit, and $dumpportsflush. 
  
 
Postprocessing tools with graphical displays are commercially available and are now an 
important part of the simulation and debug process. For large simulation runs, it is very 
difficult for the designer to analyze the output from $display or $monitor statements. It is 
more intuitive to analyze results from graphical waveforms. Formats other than VCD 
have also emerged, but VCD still remains the popular dump format for Verilog 
simulators. 
  
 
However, it is important to note that VCD files can become very large (hundreds of 
megabytes for large designs). It is important to selectively dump only those signals that 
need to be examined. 
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9.6 Summary 
  
 
In this chapter, we discussed the following aspects of Verilog: 
  

• Procedural continuous assignments can be used to override the assignments on 
registers and nets. assign and deassign can override assignments on registers. 
force and release can override assignments on registers and nets. assign and 
deassign are used in the actual design. force and release are used for debugging. 

 
• Parameters defined in a module can be overridden with the defparam statement or 

by passing a new value during module instantiation. During module instantiation, 
parameter values can be assigned by ordered list or by name. It is recommended 
to use parameter assignment by name. 

 
• Compilation of parts of the design can be made conditional by using the 'ifdef, 

'ifndef, 'elsif, 'else, and 'endif directives. Compilation flags are defined at compile 
time by using the `define statement. 

•  
 

• Execution is made conditional in Verilog simulators by means of the 
$test$plusargs system task. The execution flags are defined at run time by 
+<flag_name>. 

 
• Up to 30 files can be opened for writing in Verilog. Each file is assigned a bit in 

the multichannel descriptor. The multichannel descriptor concept can be used to 
write to multiple files. The IEEE Standard Verilog Hardware Description 
Language document describes more advanced ways of doing file I/O. 

 
• Hierarchy can be displayed with the %m option in any display statement. 

 
• Strobing is a way to display values at a certain time or event after all other 

statements in that time unit have executed. 
 

• Random numbers can be generated with the system task $random. They are used 
for random test vector generation. $random task can generate both positive and 
negative numbers. 

 
• Memory can be initialized from a data file. The data file contains addresses and 

data. Addresses can also be specified in memory initialization tasks. 
 
Value Change Dump is a popular format used by many designers for debugging with 
postprocessing tools. Verilog allows all or selected module variables to be dumped to the 
VCD file. Various system tasks are available for this purpose.  
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9.7 Exercises 
  
 

1: Using assign and deassign statements, design a positive edge-triggered D-
flipflop with asynchronous clear (q=0) and preset (q=1). 

2: Using primitive gates, design a 1-bit full adder FA. Instantiate the full adder 
inside a stimulus module. Force the sum output to a & b & c_in for the time 
between 15 and 35 units. 

3: A 1-bit full adder FA is defined with gates and with delay parameters as shown 
below. 
  
// Define a 1-bit full adder 
module fulladd(sum, c_out, a, b, c_in); 
parameter d_sum = 0, d_cout = 0; 
 
// I/O port declarations 
output sum, c_out; 
input a, b, c_in; 
 
// Internal nets 
wire s1, c1, c2; 
 
// Instantiate logic gate primitives 
xor (s1, a, b); 
and (c1, a, b); 
 
xor #(d_sum) (sum, s1, c_in); //delay on output sum is d_sum 
and (c2, s1, c_in); 
 
or  #(d_cout) (c_out, c2, c1); //delay on output c_out is d_cout 
 
endmodule 
  
 
Define a 4-bit full adder fulladd4 as shown in Example 5-8 on page 77, but pass 
the following parameter values to the instances, using the two methods 
discussed in the book: 
  
 
Instance Delay Values 

fa0 
fa1 
fa2 
fa3 

d_sum=1, d_cout=1
d_sum=2, d_cout=2
d_sum=3, d_cout=3
d_sum=4, d_cout=4
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a. Build the fulladd4 module with defparam statements to change instance 
parameter values. Simulate the 4-bit full adder using the stimulus shown 
in Example 5-9 on page 77. Explain the effect of the full adder delays on 
the times when outputs of the adder appear. (Use delays of 20 instead of 
5 used in this stimulus.) 

b. Build the fulladd4 with delay values passed to instances fa0, fa1, fa2, 
and fa3 during instantiation. Resimulate the 4-bit adder, using the 
stimulus above. Check if the results are identical. 

4: Create a design that uses the full adder example above. Use a conditional 
compilation (`ifdef). Compile the fulladd4 with defparam statements if the text 
macro DPARAM is defined by the `define statement; otherwise, compile the 
fulladd4 with module instance parameter values. 

5: Identify the files to which the following display statements will write: 
  
//File output with multi-channel descriptor 
 
module test; 
 
integer handle1,handle2,handle3; //file handles 
 
//open files 
initial 
begin 
  handle1 = $fopen("f1.out"); 
  handle2 = $fopen("f2.out"); 
  handle3 = $fopen("f3.out"); 
end 
 
//Display statements to files 
initial 
begin 
//File output with multi-channel descriptor 
  #5; 
  $fdisplay(4, "Display Statement # 1"); 
  $fdisplay(15, "Display Statement # 2"); 
  $fdisplay(6, "Display Statement # 3"); 
  $fdisplay(10, "Display Statement # 4"); 
  $fdisplay(0, "Display Statement # 5"); 
end 
 
endmodule 
 

6: What will be the output of the $display statement shown below? 
  
module top; 
A a1(); 
endmodule 
 
module A; 
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B b1(); 
endmodule 
 
module B; 
initial 
    $display("I am inside instance %m"); 
endmodule 
 

7: Consider the 4-bit full adder in Example 6-4 on page 108. Write a stimulus file 
to do random testing of the full adder. Use a random number generator to 
generate a 32-bit random number. Pick bits 3:0 and apply them to input a; pick 
bits 7:4 and apply them to input b. Use bit 8 and apply it to c_in. Apply 20 
random test vectors and observe the output. 

8: Use the 8-byte memory initialization example in Example 9-14 on page 205. 
Modify the file to read data in hexadecimal. Write a new data file with the 
following addresses and data values. Unspecified locations are not initialized. 
  
Location Address Data

1 
2 
4 
5 
6 

33 
66 
z0 
0z 
01 

 

9: Write an initial block that controls the VCD file. The initial block must do the 
following: 
  

• Set myfile.dmp as the output VCD file. 
 

• Dump all variables two levels deep in module instance top.a1.b1.c1. 
 

• Stop dumping to VCD at time 200. 
 

• Start dumping to VCD at time 400. 
 

• Stop dumping to VCD at time 500. 
 

• Create a checkpoint. Dump the current value of all VCD variables to the 
dumpfile. 
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Part 2: Advanced Verilog 
Topics 
  

 

 
10 Timing and Delays 
Distributed, lumped and pin-to-pin delays, specify blocks, parallel and full connection, 
timing checks, delay back-annotation. 

 

 
11 Switch-Level Modeling 
MOS and CMOS switches, bidirectional switches, modeling of power and ground, 
resistive switches, delay specification on switches. 

 
 
12 User-Defined Primitives 
Parts of UDP, UDP rules, combinational UDPs, sequential UDPs, shorthand symbols. 

 

 
13 Programming Language Interface 
Introduction to PLI, uses of PLI, linking and invocation of PLI tasks, conceptual 
representation of design, PLI access and utility routines. 

 

 
14 Logic Synthesis with Verilog HDL 
Introduction to logic synthesis, impact of logic synthesis, Verilog HDL constructs and 
operators for logic synthesis, synthesis design flow, verification of synthesized circuits, 
modeling tips, design partitioning. 

 

 
15 Advanced Verification Techniques 
Introduction to a simple verification flow, architectural modeling, test 
vectors/testbenches, simulation acceleration, emulation, analysis/coverage, assertion 
checking, formal verification, semi-formal verification, equivalence checking. 

 
 
 
  
 
 
 
 
 
 
 
 
 



 
 
 

 
 

216

Chapter 10. Timing and Delays 
  
 
Functional verification of hardware is used to verify functionality of the designed circuit. 
However, blocks in real hardware have delays associated with the logic elements and 
paths in them. Therefore, we must also check whether the circuit meets the timing 
requirements, given the delay specifications for the blocks. Checking timing requirements 
has become increasingly important as circuits have become smaller and faster. One of the 
ways to check timing is to do a timing simulation that accounts for the delays associated 
with the block during the simulation. 
  
 
Techniques other than timing simulation to verify timing have also emerged in design 
automation industry. The most popular technique is static timing verification. Designers 
first do a pure functional verification and then verify timing separately with a static 
timing verification tool. The main advantage of static verification is that it can verify 
timing in orders of magnitude more quickly than timing simulation. Static timing 
verification is a separate field of study and is not discussed in this book. 
  
 
In this chapter, we discuss in detail how timing and delays are controlled and specified in 
Verilog modules. Thus, by using timing simulation, the designer can verify both 
functionality and timing of the circuit with Verilog. 
  
Learning Objectives 
  

• Identify types of delay models, distributed, lumped, and pin-to-pin (path) delays 
used in Verilog simulation. 

 
• Understand how to set path delays in a simulation by using specify blocks. 

 
• Explain parallel connection and full connection between input and output pins. 
•  

 
• Understand how to define parameters inside specify blocks by using specparam 

statements. 
 

• Describe state-dependent path delays. 
 

• Explain rise, fall, and turn-off delays. Understand how to set min, max, and typ 
values. 

 
• Define system tasks for timing checks $setup, $hold, and $width. 

 
• Understand delay back-annotation.  
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10.1 Types of Delay Models 
  
 
There are three types of delay models used in Verilog: distributed, lumped, and pin-to-pin 
(path) delays. 
  
10.1.1 Distributed Delay 
  
 
Distributed delays are specified on a per element basis. Delay values are assigned to 
individual elements in the circuit. An example of distributed delays in module M is 
shown in Figure 10-1. 
  

 
Figure 10-1. Distributed Delay 

  

 
 
Distributed delays can be modeled by assigning delay values to individual gates or by 
using delay values in individual assign statements. When inputs of any gate change, the 
output of the gate changes after the delay value specified. Example 10-1 shows how 
distributed delays are specified in gates and dataflow description. 
  
Example 10-1 Distributed Delays 
  
//Distributed delays in gate-level modules 
module M (out, a, b, c, d); 
output out; 
input a, b, c, d; 
 
wire e, f; 
 
//Delay is distributed to each gate. 
and #5 a1(e, a, b); 
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and #7 a2(f, c, d); 
and #4 a3(out, e, f); 
endmodule 
 
//Distributed delays in data flow definition of a module 
module M (out, a, b, c, d); 
output out; 
input a, b, c, d; 
 
wire e, f; 
 
//Distributed delay in each expression 
assign #5 e = a & b; 
assign #7 f = c & d; 
assign #4 out = e & f; 
endmodule 
  
 
Distributed delays provide detailed delay modeling. Delays in each element of the circuit 
are specified. 
  
10.1.2 Lumped Delay 
  
 
Lumped delays are specified on a per module basis. They can be specified as a single 
delay on the output gate of the module. The cumulative delay of all paths is lumped at 
one location. The example of a lumped delay is shown in Figure 10-2 and Example 10-2.
  

 
Figure 10-2. Lumped Delay 

  

 
 
The above example is a modification of Figure 10-1. In this example, we computed the 
maximum delay from any input to the output of Figure 10-1, which is 7 + 4 = 11 units. 
The entire delay is lumped into the output gate. After a delay, primary output changes 
after any input to the module M changes. 
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Example 10-2 Lumped Delay 
  
//Lumped Delay Model 
module M (out, a, b, c, d); 
output out; 
input a, b, c, d; 
 
wire e, f; 
 
and a1(e, a, b); 
and a2(f, c, d); 
and #11 a3(out, e, f);//delay only on the output gate 
endmodule 
  
 
Lumped delays models are easy to model compared with distributed delays. 
  
10.1.3 Pin-to-Pin Delays 
  
 
Another method of delay specification for a module is pin-to-pin timing. Delays are 
assigned individually to paths from each input to each output. Thus, delays can be 
separately specified for each input/output path. In Figure 10-3, we take the example in 
Figure 10-1 and compute the pin-to-pin delays for each input/output path. 
  

 
Figure 10-3. Pin-to-Pin Delay 
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Pin-to-pin delays for standard parts can be directly obtained from data books. Pin-to-pin 
delays for modules of a digital circuit are obtained by circuit characterization, using a 
low-level simulator like SPICE. 
  
 
Although pin-to-pin delays are very detailed, for large circuits they are easier to model 
than distributed delays because the designer writing delay models needs to know only the 
I/O pins of the module rather than the internals of the module. The internals of the 
module may be designed by using gates, data flow, behavioral statements, or mixed 
design, but the pin-to-pin delay specification remains the same. Pin-to-pin delays are also 
known as path delays. We will use the term "path delays" in the succeeding sections. 
  
 
We covered distributed and lumped delays in Section 5.2, Gate Delays, and in Section 
6.2, Delays. In the following section, we study path delays in detail. 
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10.2 Path Delay Modeling 
  
 
In this section, we discuss various aspects of path delay modeling. In this section, the 
terms pin and port are used interchangeably. 
  
10.2.1 Specify Blocks 
  
 
A delay between a source (input or inout) pin and a destination (output or inout) pin of a 
module is called a module path delay. Path delays are assigned in Verilog within the 
keywords specify and endspecify. The statements within these keywords constitute a 
specify block. 
  
Specify blocks contain statements to do the following: 
  

• Assign pin-to-pin timing delays across module paths 
 

• Set up timing checks in the circuits 
 

• Define specparam constants 
  
 
For the example in Figure 10-3, we can write the module M with pin-to-pin delays, using 
specify blocks as follows: 
  
Example 10-3 Pin-to-Pin Delay 
  
//Pin-to-pin delays 
module M (out, a, b, c, d); 
output out; 
input a, b, c, d; 
 
wire e, f; 
 
//Specify block with path delay statements 
specify 
    (a => out) = 9; 
    (b => out) = 9; 
    (c => out) = 11; 
    (d => out) = 11; 
endspecify 
 
//gate instantiations 
and a1(e, a, b); 
and a2(f, c, d); 
and a3(out, e, f); 
endmodule 
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 The specify block is a separate block in the module and does not appear under any other 
block, such as initial or always. The meaning of the statements within specify blocks 
needs to be clarified. In the following subsection, we analyze the statements that are used 
inside specify blocks. 
  
10.2.2 Inside Specify Blocks 
  
 
In this section, we describe the statements that can be used inside specify blocks. 
  
Parallel connection 
  
 
As discussed earlier, every path delay statement has a source field and a destination field. 
In the path delay statements in Example 10-3, a, b, c, and d are in the position of the 
source field and out is the destination field. 
  
 
A parallel connection is specified by the symbol => and is used as shown below. 
  
 
Usage: ( <source_field> => <destination_field>) = <delay_value>; 
  
 
In a parallel connection, each bit in source field connects to its corresponding bit in the 
destination field. If the source and the destination fields are vectors, they must have the 
same number of bits; otherwise, there is a mismatch. Thus, a parallel connection specifies 
delays from each bit in source to each bit in destination. 
  
 
Figure 10-4 shows how bits between the source field and destination field are connected 
in a parallel connection. Example 10-4 shows the Verilog description for a parallel 
connection. 
  
Example 10-4 Parallel Connection 
  
//bit-to-bit connection. both a and out are single-bit 
(a => out) = 9; 
 
//vector connection. both a and out are 4-bit vectors a[3:0], out[3:0] 
//a is source field, out is destination field. 
(a => out) = 9; 
//the above statement is shorthand notation 
//for four bit-to-bit connection statements 
(a[0] => out[0]) = 9; 
(a[1] => out[1]) = 9; 
(a[2] => out[2]) = 9; 
(a[3] => out[3]) = 9; 
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//illegal connection. a[4:0] is a 5-bit vector, out[3:0] is 4-bit. 
//Mismatch between bit width of source and destination fields 
(a => out) = 9; //bit width does not match. 
  

 
Figure 10-4. Parallel Connection 

  

 
 
Full connection 
  
 
A full connection is specified by the symbol *> and is used as shown below. 
  
 
Usage: ( <source_field> *> <destination_field>) = <delay_value>; 
  
 
In a full connection, each bit in the source field connects to every bit in the destination 
field. If the source and the destination are vectors, then they need not have the same 
number of bits. A full connection describes the delay between each bit of the source and 
every bit in the destination, as illustrated in Figure 10-5. 
  

 
Figure 10-5. Full Connection 

  

 
 
Delays for module M were described in Example 10-3, using a parallel connection. 
Example 10-5 shows how delays are specified by using a full connection. 
  
Example 10-5 Full Connection 
  
//Full Connection 
module M (out, a, b, c, d); 
output out; 
input a, b, c, d; 
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wire e, f; 
 
//full connection 
specify 
(a,b *> out) = 9; 
(c,d *> out) = 11; 
endspecify 
 
and a1(e, a, b); 
 
and a2(f, c, d); 
and a3(out, e, f); 
endmodule 
  
 
The full connection is particularly useful for specifying a delay between each bit of an 
input vector and every bit in the output vector when bit width of the vectors is large. The 
following example shows how the full connection sometimes specifies delays very 
concisely. 
  
//a[31:0] is a 32-bit vector and out[15:0] is a 16-bit vector 
//Delay of 9 between each bit of a and every bit of out 
 
specify 
( a *> out) = 9; // you would need 32 X 16 = 352 parallel connection 
              // statements to accomplish the same result! Why? 
endspecify 
  
Edge-Sensitive Paths 
  
 
An edge-sensitive path construct is used to model the timing of input to output delays, 
which occurs only when a specified edge occurs at the source signal. 
  
//In this example, at the positive edge of clock, a module path 
//extends from clock signal to out signal using a rise delay of 10 
//and a fall delay of 8. The data path is from in to out, and the 
//in signal is not inverted as it propagates to the out signal. 
(posedge clock => (out +: in)) = (10 : 8); 
  
specparam statements 
  
 
Special parameters can be declared for use inside a specify block. They are declared by 
the keyword specparam. Instead of using hardcoded delay numbers to specify pin-to-pin 
delays, it is common to define specify parameters by using specparam and then to use 
those parameters inside the specify block. The specparam values are often used to store 
values for nonsimulation tools, such as delay calculators, synthesis tools, and layout 
estimators. A sample specify block with specparam statements is shown in Example 10-6.
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Example 10-6 Specparam 
  
//Specify parameters using specparam statement 
specify 
    //define parameters inside the specify block 
    specparam d_to_q = 9; 
    specparam clk_to_q = 11; 
    (d => q) = d_to_q; 
    (clk => q) = clk_to_q; 
endspecify 
  
 
Note that specify parameters are used only inside their own specify block. They are not 
general-purpose parameters that are declared by the keyword parameter. Specify 
parameters are provided for convenience in assigning delays. It is recommended that all 
pin-to-pin delay values be expressed in terms of specify parameters instead of hardcoded 
numbers. Thus, if timing specifications of the circuit change, the user has to change only 
the values of specify parameters. 
  
Conditional path delays 
  
 
Based on the states of input signals to a circuit, the pin-to-pin delays might change. 
Verilog allows path delays to be assigned conditionally, based on the value of the signals 
in the circuit. A conditional path delay is expressed with the if conditional statement. The 
operands can be scalar or vector module input or inout ports or their bit-selects or part-
selects, locally defined registers or nets or their bit-selects or part-selects, or compile time 
constants (constant numbers and specify block parameters). The conditional expression 
can contain any logical, bitwise, reduction, concatenation, or conditional operator shown 
in Table 6-1 on page 96. The else construct cannot be used. Conditional path delays are 
also known as state dependent path delays(SDPD). 
  
Example 10-7 Conditional Path Delays 
  
//Conditional Path Delays 
module M (out, a, b, c, d); 
output out; 
input a, b, c, d; 
 
wire e, f; 
 
//specify block with conditional pin-to-pin timing 
specify 
 
//different pin-to-pin timing based on state of signal a. 
if (a) (a => out) = 9; 
if (~a) (a => out) = 10; 
 
//Conditional expression contains two signals b , c. 
//If b & c is true, delay = 9, 
//Conditional Path Delays 
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if (b & c) (b => out) = 9; 
if (~(b & c)) (b => out) = 13; 
 
//Use concatenation operator. 
//Use Full connection 
if ({c,d} == 2'b01) 
        (c,d *> out) = 11; 
if ({c,d} != 2'b01) 
        (c,d *> out) = 13; 
 
endspecify 
 
and a1(e, a, b); 
and a2(f, c, d); 
and a3(out, e, f); 
endmodule 
  
Rise, fall, and turn-off delays 
  
 
Pin-to-pin timing can also be expressed in more detail by specifying rise, fall, and turn-
off delay values (see Example 10-8). One, two, three, six, or twelve delay values can be 
specified for any path. Four, five, seven, eight, nine, ten, or eleven delay value 
specification is illegal. The order in which delays are specified must be strictly followed. 
Rise, fall, and turn-off delay specification for gates was discussed in Section 5.2.1, Rise, 
Fall, and Turn-off Delays. We discuss it in this section in the context of pin-to-pin timing 
specification. 
  
Example 10-8 Path Delays Specified by Rise, Fall and Turn-off Values 
  
//Specify one delay only. Used for all transitions. 
specparam t_delay = 11; 
(clk => q) = t_delay; 
 
//Specify two delays, rise and fall 
//Rise used for transitions 0->1, 0->z, z->1 
//Fall used for transitions 1->0, 1->z, z->0 
specparam t_rise = 9, t_fall = 13; 
(clk => q) = (t_rise, t_fall); 
 
//Specify three delays, rise, fall, and turn-off 
//Rise used for transitions 0->1, z->1 
//Fall used for transitions 1->0, z->0 
//Turn-off used for transitions 0->z, 1->z 
specparam t_rise = 9, t_fall = 13, t_turnoff = 11; 
(clk => q) = (t_rise, t_fall, t_turnoff); 
 
//specify six delays. 
//Delays are specified in order 
//for transitions 0->1, 1->0, 0->z, z->1, 1->z, z->0. Order 
//must be followed strictly. 
specparam t_01 = 9, t_10 = 13, t_0z = 11; 
specparam t_z1 = 9, t_1z = 11, t_z0 = 13; 
(clk => q) = (t_01, t_10, t_0z, t_z1, t_1z, t_z0); 
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//specify twelve delays. 
//Delays are specified in order 
//for transitions 0->1, 1->0, 0->z, z->1, 1->z, z->0 
//               0->x, x->1, 1->x, x->0, x->z, z->x. 
//Order must be followed strictly. 
specparam t_01 = 9, t_10 = 13, t_0z = 11; 
specparam t_z1 = 9, t_1z = 11, t_z0 = 13; 
specparam t_0x = 4, t_x1 = 13, t_1x = 5; 
specparam t_x0 = 9, t_xz = 11, t_zx = 7; 
(clk => q) = (t_01, t_10, t_0z, t_z1, t_1z, t_z0, 
            t_0x, t_x1, t_1x, t_x0, t_xz, t_zx ); 
  
Min, max, and typical delays 
  
 
Min, max, and typical delay values were discussed earlier for gates in Section 5.2.2, 
Min/Typ/Max Values. Min, max, and typical values can also be specified for pin-to-pin 
delays. Any delay value shown in Example 10-8 can be expressed in min, max, typical 
delay form. Consider the case of the three-delay specification, shown in Example 10-9. 
Each delay is expressed in min:typ:max form. 
  
Example 10-9 Path Delays with Min, Max, and Typical Values 
  
//Specify three delays, rise, fall, and turn-off 
//Each delay has a min:typ:max value 
specparam t_rise = 8:9:10, t_fall = 12:13:14, t_turnoff = 10:11:12; 
(clk => q) = (t_rise, t_fall, t_turnoff); 
  
 
As discussed earlier, min, typical, and max values can be typically invoked with the 
runtime option +mindelays, +typdelays, or +maxdelays on the Verilog command line. 
Default is the typical delay value. Invocation may vary with individual simulators. 
  
Handling x transitions 
  
 
Verilog uses the pessimistic method to compute delays for transitions to the x state. The 
pessimistic approach dictates that if x transition delays are not explicitly specified, 
  

• Transitions from x to a known state should take the maximum possible time 
 

• Transition from a known state to x should take the minimum possible time 
  
 
A path delay specification with six delays borrowed from Example 10-8 is shown below.
  
//Six delays specified . 
//for transitions 0->1, 1->0, 0->z, z->1, 1->z, z->0. 
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specparam t_01 = 9, t_10 = 13, t_0z = 11; 
specparam t_z1 = 9, t_1z = 11, t_z0 = 13; 
(clk => q) = (t_01, t_10, t_0z, t_z1, t_1z, t_z0); 
  
 
The computation for transitions to x for the above delay specification is shown in the 
table below. 
  
 
Transition Delay Value 

0->x 
  
1->x 
  
z->x 
 
x->0 
  
x->1 
  
x->z 

min(t_01, t_0z) = 9 
  
min(t_10, t_1z) = 11 
  
min(t_z0, t_z1) = 9 
 
max(t_10, t_z0) = 13
  
max(t_01, t_z1) = 9 
  
max(t_1z, t_0z) = 11
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10.3 Timing Checks 
  
 
In the earlier sections of this chapter, we discussed how to specify path delays. The 
purpose of specifying path delays is to simulate the timing of the actual digital circuit 
with greater accuracy than gate delays. In this section, we describe how to set up timing 
checks to see if any timing constraints are violated during simulation. Timing verification 
is particularly important for timing critical, high-speed sequential circuits such as 
microprocessors. 
  
 
System tasks are provided to do timing checks in Verilog. There are many timing check 
system tasks available in Verilog. We will discuss the three most common timing 
checks[1] tasks: $setup, $hold, and $width. All timing checks must be inside the specify 
blocks only. Optional notifier arguments used in these timing check system tasks are 
omitted to simplify the discussion. 
 
[1] The IEEE Standard Verilog Hardware Description Language document provides 
additional constraint checks, $removal, $recrem, $timeskew, $fullskew. Please refer to it 
for details. Negative input timing constraints can also be specified. 
  
10.3.1 $setup and $hold Checks 
  
 
$setup and $hold tasks are used to check the setup and hold constraints for a sequential 
element in the design. In a sequential element such as an edge-triggered flip-flop, the 
setup time is the minimum time the data must arrive before the active clock edge. The 
hold time is the minimum time the data cannot change after the active clock edge. Setup 
and hold times are shown in Figure 10-6. 
  

 
Figure 10-6. Setup and Hold Times 
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$setup task 
  
 
Setup checks can be specified with the system task $setup. 
  
 
Usage: $setup(data_event, reference_event, limit); 

   
data_event 

 
Signal that is monitored for violations 

  reference_event Signal that establishes a reference for monitoring the 
data_event signal 

  limit Minimum time required for setup of data event 

Violation is reported if (Treference_event - Tdata_event) < limit. 
 
An example of a setup check is shown below. 
  
//Setup check is set. 
//clock is the reference 
//data is being checked for violations 
//Violation reported if Tposedge_clk - Tdata < 3 
specify 
   $setup(data, posedge clock, 3); 
endspecify 
  
$hold task 
  
 
Hold checks can be specified with the system task $hold. 
  
 
Usage:  $hold (reference_event, data_event, limit); 

   
reference_event 

 
Signal that establishes a reference for monitoring the 
data_event signal 

  data_event Signal that is monitored for violation 

  limit Minimum time required for hold of data event 

Violation is reported if ( Tdata_event - Treference_event ) < limit. 
 
An example of a hold check is shown below. 
  
//Hold check is set. 
//clock is the reference 
//data is being checked for violations 
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//Violation reported if Tdata - Tposedge_clk < 5 
specify 
    $hold(posedge clear, data, 5); 
endspecify 
  
10.3.2 $width Check 
  
 
Sometimes it is necessary to check the width of a pulse. 
  

 
 
The system task $width is used to check that the width of a pulse meets the minimum 
width requirement. 
  
 
Usage: $width(reference_event, limit); 

   
reference_event 

 
Edge-triggered event (edge transition of a signal) 

  limit Minimum width of the pulse 
 
The data_event is not specified explicitly for $width but is derived as the next opposite 
edge of the reference_event signal. Thus, the $width task checks the time between the 
transition of a signal value to the next opposite transition in the signal value. 
  
 
Violation is reported if ( Tdata_event - Treference_event ) < limit. 
  
//width check is set. 
//posedge of clear is the reference_event 
//the next negedge of clear is the data_event 
//Violation reported if Tdata - Tclk < 6 
specify 
    $width(posedge clock, 6); 
endspecify 
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10.4 Delay Back-Annotation 
  
 
Delay back-annotation is an important and vast topic in timing simulation. An entire book
could be devoted to that subject. However, in this section, we introduce the designer to 
the concept of back-annotation of delays in a simulation. Detailed coverage of this topic 
is outside the scope of this book. For details, refer to the IEEE Standard Verilog 
Hardware Description Language document. 
  
 
The various steps in the flow that use delay back-annotation are as follows: 
  

1. The designer writes the RTL description and then performs functional simulation.
 

2. The RTL description is converted to a gate-level netlist by a logic synthesis tool. 
 

3. The designer obtains pre-layout estimates of delays in the chip by using a delay 
calculator and information about the IC fabrication process. Then, the designer 
does timing simulation or static timing verification of the gate-level netlist, using 
these preliminary values to check that the gate-level netlist meets timing 
constraints. 

 
4. The gate-level netlist is then converted to layout by a place and route tool. The 

post-layout delay values are computed from the resistance (R) and capacitance 
(C) information in the layout. The R and C information is extracted from factors 
such as geometry and IC fabrication process. 

 
5. The post-layout delay values are back-annotated to modify the delay estimates for 

the gate-level netlist. Timing simulation or static timing verification is run again 
on the gate-level netlist to check if timing constraints are still satisfied. 

 
6. If design changes are required to meet the timing constraints, the designer has to 

go back to the RTL level, optimize the design for timing, and then repeat Step 2 
through Step 5. 

  
 
Figure 10-7 shows the flow of delay back annotation. 
  

 
 
 
 
 
 
 



 
 
 

 
 

233

Figure 10-7. Delay Back-Annotation 
  

 
 
A standard format called the Standard Delay Format (SDF) is popularly used for back-
annotation. Details of delay back-annotation are outside the scope of this book and can be 
obtained from the IEEE Standard Verilog Hardware Description Language document. 
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10.5 Summary 
  
 
In this chapter, we discussed the following aspects of Verilog: 
  

• There are three types of delay models: lumped, distributed, and path delays. 
Distributed delays are more accurate than lumped delays but difficult to model for 
large designs. Lumped delays are relatively simpler to model. 

 
• Path delays, also known as pin-to-pin delays, specify delays from input or inout 

pins to output or inout pins. Path delays provide the most accuracy for modeling 
delays within a module. 

 
• Specify blocks are the basic blocks for expressing path delay information. In 

modules, specify blocks appear separately from initial or always blocks. 
 

• Parallel connection and full connection are two methods to describe path delays. 
 

• Parameters can be defined inside the specify blocks by specparam statements. 
 

• Path delays can be conditional or dependent on the values of signals in the circuit. 
They are known as State Dependent Path Delays (SDPD). 

 
• Rise, fall, and turn-off delays can be described in a path delay. Min, max, and 

typical values can also be specified. Transitions to x are handled by the 
pessimistic method. 

 
• Setup, hold, and width are timing checks that check timing integrity of the digital 

circuit. Other timing checks are also available but are not discussed in the book. 
 

• Delay back-annotation is used to resimulate the digital design with path delays 
extracted from layout information. This process is used repeatedly to obtain a 
final circuit that meets all timing requirements. 
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10.6 Exercises 
  
 

1: What type of delay model is used in the following circuit? Write the Verilog 
description for the module Y. 
  

 

2: Use the largest delay in the module to convert the circuit to a lumped delay 
model. Using a lumped delay model, write the Verilog description for the 
module Y. 

3: Compute the delays along each path from input to output for the circuit in 
Exercise 1. Write the Verilog description, using the path delay model. Use 
specify blocks. 

4: Consider the negative edge-triggered with the asynchronous reset D-flipflop 
shown in the figure below. Write the Verilog description for the module D_FF. 
Show only the I/O ports and path delay specification. Describe path delays, 
using parallel connection. 
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5: Modify the D-flipflop in Exercise 4 if all path delays are 5 units. Describe the 
path delays, using full connections to q and qbar. 

6: Assume that a six-delay specification is to be specified for all path delays. All 
path delays are equal. In the specify block, define parameters t_01 = 4, t_10 = 5, 
t_0z = 7, t_z1 = 2, t_1z = 3, t_z0 = 8. Use the D-flipflop in Exercise 4 and write 
the six-delay specification for all paths, using full connections. 

7: In Exercise 4, modify the delay specification for the D-flipflop if the delays are 
dependent on the value of d as follows: 
  
clock -> q = 5 for d = 1'b0, clock -> q= 6 otherwise 
clock -> qbar = 4 for d = 1'b0, clock ->qbar = 7 otherwise 
  
 
All other delays are 5 units. 

8: For the D-flipflop in Exercise 7, add timing checks for the D-flipflop in the 
specify block as follows: 
  
The minimum setup time for d with respect to clock is 8. 
  
The minimum hold time for d with respect to clock is 4. 
  
The reset signal is active high. The minimum width of a reset pulse is 42. 

9:  
Describe delay back-annotation. Draw the flow diagram for delay back-
annotation. 
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Chapter 11. Switch-Level Modeling 
  
 
In Part 1 of this book, we explained digital design and simulation at a higher level of 
abstraction such as gates, data flow, and behavior. However, in rare cases designers will 
choose to design the leaf-level modules, using transistors. Verilog provides the ability to 
design at a MOS-transistor level. Design at this level is becoming rare with the increasing 
complexity of circuits (millions of transistors) and with the availability of sophisticated 
CAD tools. Verilog HDL currently provides only digital design capability with logic 
values 0 1, x, z, and the drive strengths associated with them. There is no analog 
capability. Thus, in Verilog HDL, transistors are also known switches that either conduct 
or are open. In this chapter, we discuss the basic principles of switch-level modeling. For 
most designers, it is adequate to know only the basics. Detailed information on signal 
strengths and advanced net definitions is provided in Appendix A, Strength Modeling and 
Advanced Net Definitions. Refer to the IEEE Standard Verilog Hardware Description 
Language document for complete details on switch-level modeling. 
  
 
Learning Objectives 
  

• Describe basic MOS switches nmos, pmos, and cmos. 
 

• Understand modeling of bidirectional pass switches, power, and ground. 
 

• Identify resistive MOS switches. 
 

• Explain the method to specify delays on basic MOS switches and bidirectional 
pass switches. 

 
• Build basic switch-level circuits in Verilog, using available switches. 
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11.1 Switch-Modeling Elements 
  
 
Verilog provides various constructs to model switch-level circuits. Digital circuits at 
MOS-transistor level are described using these elements.[1] 
 
[1] Array of instances can be defined for switches. Array of instances is described in 
Section 5.1.3, Array of Instances. 
  
11.1.1 MOS Switches 
  
 
Two types of MOS switches can be defined with the keywords nmos and pmos. 
  
//MOS switch keywords 
nmos              pmos 
  
 
Keyword nmos is used to model NMOS transistors; keyword pmos is used to model 
PMOS transistors. The symbols for nmos and pmos switches are shown in Figure 11-1. 
  

 
Figure 11-1. NMOS and PMOS Switches 

  

 
 
In Verilog, nmos and pmos switches are instantiated as shown in Example 11-1. 
  
Example 11-1 Instantiation of NMOS and PMOS Switches 
  
nmos n1(out, data, control); //instantiate a nmos switch 
pmos p1(out, data, control); //instantiate a pmos switch 
  
Since switches are Verilog primitives, like logic gates, the name of the instance is 
optional. Therefore, it is acceptable to instantiate a switch without assigning an instance 
name. 
  
nmos (out, data, control); //instantiate an nmos switch; no instance 
name 
pmos (out, data, control); //instantiate a pmos switch; no instance 
name 
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The value of the out signal is determined from the values of data and control signals. 
Logic tables for out are shown in Table 11-1. Some combinations of data and control 
signals cause the gates to output to either a 1 or 0, or to an z value without a preference 
for either value. The symbol L stands for 0 or z; H stands for 1 or z. 
  

 
Table 11-1. Logic Tables for NMOS and PMOS 

  

 
 
Thus, the nmos switch conducts when its control signal is 1. If the control signal is 0, the 
output assumes a high impedance value. Similarly, a pmos switch conducts if the control 
signal is 0. 
  
 
11.1.2 CMOS Switches 
  
 
CMOS switches are declared with the keyword cmos. 
  
A cmos device can be modeled with a nmos and a pmos device. The symbol for a cmos 
switch is shown in Figure 11-2. 
  

Figure 11-2. CMOS Switch 
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A cmos switch is instantiated as shown in Example 11-2. 
  
Example 11-2 Instantiation of CMOS Switch 
  
cmos c1(out, data, ncontrol, pcontrol);//instantiate cmos gate. 
              or 
cmos (out, data, ncontrol, pcontrol); //no instance name given. 
  
 
The ncontrol and pcontrol are normally complements of each other. When the ncontrol 
signal is 1 and pcontrol signal is 0, the switch conducts. If ncontrol signal is 0 and 
pcontrol is 1, the output of the switch is high impedance value. The cmos gate is 
essentially a combination of two gates: one nmos and one pmos. Thus the cmos 
instantiation shown above is equivalent to the following: 
  
nmos (out, data, ncontrol); //instantiate a nmos switch 
pmos (out, data, pcontrol); //instantiate a pmos switch 
  
 
Since a cmos switch is derived from nmos and pmos switches, it is possible to derive the 
output value from Table 11-1, given values of data, ncontrol, and pcontrol signals. 
  
11.1.3 Bidirectional Switches 
  
 
NMOS, PMOS and CMOS gates conduct from drain to source. It is important to have 
devices that conduct in both directions. In such cases, signals on either side of the device 
can be the driver signal. Bidirectional switches are provided for this purpose. Three 
keywords are used to define bidirectional switches: tran, tranif0, and tranif1. 
  
tran         tranif0         tranif1 
  
 
Symbols for these switches are shown in Figure 11-3 below. 
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Figure 11-3. Bidirectional Switches 
  

 
 
The tran switch acts as a buffer between the two signals inout1 and inout2. Either inout1 
or inout2 can be the driver signal. The tranif0 switch connects the two signals inout1 and 
inout2 only if the control signal is logical 0. If the control signal is a logical 1, the 
nondriver signal gets a high impedance value z. The driver signal retains value from its 
driver. The tranif1 switch conducts if the control signal is a logical 1. 
  
 
These switches are instantiated as shown in Example 11-3. 
  
Example 11-3 Instantiation of Bidirectional Switches 
  
tran t1(inout1, inout2); //instance name t1 is optional 
tranif0 (inout1, inout2, control); //instance name is not specified 
tranif1 (inout1, inout2, control); //instance name is not specified 
  
 
Bidirectional switches are typically used to provide isolation between buses or signals. 
  
11.1.4 Power and Ground 
  
 
The power (Vdd, logic 1) and Ground (Vss, logic 0) sources are needed when transistor-
level circuits are designed. Power and ground sources are defined with keywords supply1 
and supply0. 
  
 
Sources of type supply1 are equivalent to Vdd in circuits and place a logical 1 on a net. 
Sources of the type supply0 are equivalent to ground or Vss and place a logical 0 on a 
net. Both supply1 and supply0 place logical 1 and 0 continuously on nets throughout the 
simulation. 
  
 
Sources supply1 and supply0 are shown below. 
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supply1 vdd; 
supply0 gnd; 
 
assign a = vdd; //Connect a to vdd 
assign b = gnd; //Connect b to gnd 
  
11.1.5 Resistive Switches 
  
 
MOS, CMOS, and bidirectional switches discussed before can be modeled as 
corresponding resistive devices. Resistive switches have higher source-to-drain 
impedance than regular switches and reduce the strength of signals passing through them. 
Resistive switches are declared with keywords that have an "r" prefixed to the 
corresponding keyword for the regular switch. Resistive switches have the same syntax 
as regular switches. 
  
rnmos       rpmos                   //resistive nmos and pmos switches 
rcmos                               //resistive cmos switch 
rtran       rtranif0    rtranif1    //resistive bidirectional switches.
  
 
There are two main differences between regular switches and resistive switches: their 
source-to-drain impedances and the way they pass signal strengths. Refer to Appendix A, 
Strength Modeling and Advanced Net Definitions, for strength levels in Verilog. 
  

• Resistive devices have a high source-to-drain impedance. Regular switches have a 
low source-to-drain impedance. 

 
• Resistive switches reduce signal strengths when signals pass through them. The 

changes are shown below. Regular switches retain strength levels of signals from 
input to output. The exception is that if the input is of strength supply, the output 
is of strong strength. Table 11-2 shows the strength reduction due to resistive 
switches. 

  
 

Table 11-2. Strength Reduction by Resistive Switches 
 

Input Strength Output Strength

supply pull 

strong pull 

pull weak 

weak medium 
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medium small 

small small 

high high 
 
11.1.6 Delay Specification on Switches 
  
MOS and CMOS switches 
  
 
Delays can be specified for signals that pass through these switch-level elements. Delays 
are optional and appear immediately after the keyword for the switch. Delay specification 
is similar to that discussed in Section 5.2.1, Rise, Fall, and Turn-off Delays. Zero, one, 
two, or three delays can be specified for switches according to Table 11-3. 
  
 
Table 11-3. Delay Specification on MOS and CMOS Switches 
Switch Element Delay Specification Examples 

pmos, nmos, rpmos, 
rnmos 

Zero (no delay) 
  
One (same delay on all transitions) 
  
 
Two (rise, fall) 
  
 
Three (rise, fall, turnoff) 

pmos p1(out, data, control); 
  
pmos #(1) p1(out, data, 
control); 
  
nmos #(1, 2) p2(out, data, 
control); 
  
nmos #(1, 3, 2) p2(out, 
data, control); 

cmos, rcmos Zero, one, two, or three delays 
(same as above) 

cmos #(5) c2(out, data, 
nctrl, pctrl); 
  
cmos #(1,2) c1(out, data, 
nctrl, pctrl); 

 
Bidirectional pass switches 
  
 
Delay specification is interpreted slightly differently for bidirectional pass switches. 
These switches do not delay signals passing through them. Instead, they have turn-on and 
turn-off delays while switching. Zero, one, or two delays can be specified for 
bidirectional switches, as shown in Table 11-4. 
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Table 11-4. Delay Specification for Bidirectional Switches 
 
Switch Element Delay Specification Examples 

tran, rtran No delay specification 
allowed 

  

tranif1, rtranif1 tranif0, 
rtranif0 

Zero (no delay) 
  
 
One (both turn-on and 
turn-off) 
  
Two (turn-on, turn-off) 

rtranif0 rt1(inout1, inout2, 
control); 
  
tranif0 #(3) T(inout1, inout2, 
control); 
  
tranif1 #(1,2) t1(inout1, inout2, 
control); 

 
Specify blocks 
  
 
Pin-to-pin delays and timing checks can also be specified for modules designed using 
switches. Pin-to-pin timing is described, using specify blocks. Pin-to-pin delay 
specification is discussed in detail in Chapter 10, Timing and Delays, and is identical for 
switch-level modules. 
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11.2 Examples 
  
 
In this section, we discuss how to build practical digital circuits, using switch-level 
constructs. 
  
11.2.1 CMOS Nor Gate 
  
 
Though Verilog has a nor gate primitive, let us design our own nor gate,using CMOS 
switches. The gate and the switch-level circuit diagram for the nor gate are shown in 
Figure 11-4. 
  

 
Figure 11-4. Gate and Switch Diagram for Nor Gate 

  

 
 
Using the switch primitives discussed in Section 11.1, Switch-Modeling Elements, the 
Verilog description of the circuit is shown in Example 11-4 below. 
  
Example 11-4 Switch-Level Verilog for Nor Gate 
  
//Define our own nor gate, my_nor 
module my_nor(out, a, b); 
 
output out; 
input a, b; 
 
//internal wires 
wire c; 
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//set up power and ground lines 
supply1 pwr;     //pwr is connected to Vdd (power supply) 
supply0 gnd ;   //gnd is connected to Vss(ground) 
 
//instantiate pmos  switches 
pmos  (c, pwr, b); 
pmos  (out, c, a); 
 
//instantiate nmos switches 
nmos  (out, gnd, a); 
nmos  (out, gnd, b); 
 
endmodule 
  
 
We can now test our nor gate, using the stimulus shown below. 
  
//stimulus to test the gate 
module  stimulus; 
reg A, B; 
wire OUT; 
 
//instantiate the my_nor module 
my_nor  n1(OUT, A, B); 
 
//Apply stimulus 
initial 
begin 
    //test all possible combinations 
    A = 1'b0;  B = 1'b0; 
    #5 A = 1'b0;  B = 1'b1; 
    #5 A = 1'b1;  B = 1'b0; 
    #5 A = 1'b1;  B = 1'b1; 
end 
 
//check results 
initial 
    $monitor($time, "  OUT = %b, A = %b, B = %b", OUT, A, B); 
 
endmodule 
  
 
The output of the simulation is shown below. 
  
0  OUT = 1, A = 0, B = 0 
5  OUT = 0, A = 0, B = 1 
10  OUT = 0, A = 1, B = 0 
15  OUT = 0, A = 1, B = 1 
  
 
Thus we designed our own nor gate. If designers need to customize certain library blocks, 
they use switch-level modeling. 
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11.2.2 2-to-1 Multiplexer 
  
 
A 2-to-1 multiplexer can be defined with CMOS switches. We will use the my_nor gate 
declared in Section 11.2.1, CMOS Nor Gate to implement the not function. The circuit 
diagram for the multiplexer is shown in Figure 11-5 below. 
  

 
Figure 11-5. 2-to-1 Multiplexer, Using Switches 

  

 
 
The 2-to-1 multiplexer passes the input I0 to output OUT if S = 0 and passes I1 to OUT if 
S = 1. The switch-level description for the 2-to-1 multiplexer is shown in Example 11-4. 
  
Example 11-5 Switch-Level Verilog Description of 2-to-1 Multiplexer 
  
//Define a 2-to-1 multiplexer using switches 
module my_mux (out, s, i0, i1); 
 
output out; 
input s, i0, i1; 
 
//internal wire 
wire sbar; //complement of s 
 
//create the complement of s; use my_nor defined previously. 
my_nor nt(sbar, s, s); //equivalent to a not gate 
 
//instantiate cmos switches 
cmos (out, i0, sbar, s); 
cmos (out, i1, s, sbar); 
 
endmodule 
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The 2-to-1 multiplexer can be tested with a small stimulus. The stimulus is left as an 
exercise to the reader. 
  
11.2.3 Simple CMOS Latch 
  
 
We designed combinatorial elements in the previous examples. Let us now define a 
memory element which can store a value. The diagram for a level-sensitive CMOS latch 
is shown in Figure 11-6. 
  

 
Figure 11-6. CMOS flipflop 

  

 
 
The switches C1 and C2 are CMOS switches, discussed in Section 11.1.2, CMOS 
Switches. Switch C1 is closed if clk = 1, and switch C2 is closed if clk = 0. Complement 
of the clk is fed to the ncontrol input of C2. The CMOS inverters can be defined by using 
MOS switches, as shown in Figure 11-7. 
  

 
Figure 11-7. CMOS Inverter 
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We are now ready to write the Verilog description for the CMOS latch. First, we need to 
design our own inverter my_not by using switches. We can write the Verilog module 
description for the CMOS inverter from the switch-level circuit diagram in Figure 11-7. 
The Verilog description of the inverter is shown below. 
  
Example 11-6 CMOS Inverter 
  
//Define an inverter using MOS switches 
module my_not(out, in); 
 
output out; 
input in; 
 
//declare power and ground 
supply1 pwr; 
supply0 gnd; 
 
//instantiate nmos and pmos switches 
pmos  (out, pwr, in); 
nmos  (out, gnd, in); 
 
endmodule 
  
Now, the CMOS latch can be defined using the CMOS switches and my_not inverters. 
The Verilog description for the CMOS latch is shown in Example 11-6. 
  
Example 11-7 CMOS Flipflop 
  
//Define a CMOS latch 
module cff ( q, qbar, d, clk); 
 
 
output q, qbar; 
input d, clk; 
 
//internal nets 
wire e; 
wire nclk; //complement of clock 
 
//instantiate the inverter 
my_not nt(nclk, clk); 
 
//instantiate CMOS switches 
cmos  (e, d, clk, nclk); //switch C1 closed i.e. e = d, when clk = 1. 
cmos  (e, q, nclk, clk); //switch C2 closed i.e. e = q, when clk = 0. 
 
 
//instantiate the inverters 
my_not nt1(qbar, e); 
my_not nt2(q, qbar); 
 
endmodule 
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We will leave it as an exercise to the reader to write a small stimulus module and 
simulate the design to verify the load and store properties of the latch. 
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11.3 Summary 
  
 
We discussed the following aspects of Verilog in this chapter: 
  

• Switch-level modeling is at a very low level of design abstraction. Designers use 
switch modeling in rare cases when they need to customize a leaf cell. Verilog 
design at this level is becoming less popular with increasing complexity of 
circuits. 

 
• MOS, CMOS, bidirectional switches, and supply1 and supply0 sources can be 

used to design any switch-level circuit. CMOS switches are a combination of 
MOS switches. 

 
• Delays can be optionally specified for switch elements. Delays are interpreted 

differently for bidirectional devices. 
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11.4 Exercises 
  
 

1: Draw the circuit diagram for an xor gate, using nmos and pmos switches. Write 
the Verilog description for the circuit. Apply stimulus and test the design. 

2: Draw the circuit diagram for and and or gates, using nmos and pmos switches. 
Write the Verilog description for the circuits. Apply stimulus and test the 
design. 

3: Design the 1-bit full-adder shown below using the xor, and, and or gates built in 
Exercise 1 and Exercise 2 above. Apply stimulus and test the design. 
  

 

4: Design a 4-bit bidirectional bus switch that has two buses, BusA and BusB, on 
one side and a single bus, BUS, on the other side. A 1-bit control signal is used 
for switching. BusA and BUS are connected if control = 1. BusB and BUS are 
connected if control = 0. (Hint: Use the switches tranif0 and tranif1.) Apply 
stimulus and test the design. 
  

 

5: Instantiate switches with the following delay specifications. Use your own 
input/output port names. 
  

a. A pmos switch with rise = 2 and fall = 3. 
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b. An nmos switch with rise = 4, fall = 6, turn-off = 5 
c. A cmos switch with delay = 6 
d. A tranif1 switch with turn-on = 5, turn-off = 6 
e. A tranif0 with delay = 3. 
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Chapter 12. User-Defined Primitives 
  
 
Verilog provides a standard set of primitives, such as and, nand, or, nor, and not, as a part 
of the language. These are also commonly known as built-in primitives. However, 
designers occasionally like to use their own custom-built primitives when developing a 
design. Verilog provides the ability to define User-Defined Primitives (UDP). These 
primitives are self-contained and do not instantiate other modules or primitives. UDPs are 
instantiated exactly like gate-level primitives. 
  
 
There are two types of UDPs: combinational and sequential. 
  

• Combinational UDPs are defined where the output is solely determined by a 
logical combination of the inputs. A good example is a 4-to-1 multiplexer. 

 
• Sequential UDPs take the value of the current inputs and the current output to 

determine the value of the next output. The value of the output is also the internal 
state of the UDP. Good examples of sequential UDPs are latches and flipflops. 

  
 
Learning Objectives 
 

• Understand UDP definition rules and parts of a UDP definition. 
 

• Define sequential and combinational UDPs. 
 

• Explain instantiation of UDPs. 
 

• Identify UDP shorthand symbols for more conciseness and better readability. 
 

• Describe the guidelines for UDP design. 
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12.1 UDP basics 
  
 
In this section, we describe parts of a UDP definition and rules for UDPs. 
  
12.1.1 Parts of UDP Definition 
  
Figure 12-1 shows the distinct parts of a basic UDP definition in pseudo syntax form. For 
details, see the formal syntax definition described in Appendix , Formal Syntax 
Definition. 
  
Figure 12-1 Parts of UDP Definition 
  
//UDP name and terminal list 
primitive <udp_name> ( 
<output_terminal_name>(only one allowed) 
<input_terminal_names> ); 
 
 
//Terminal declarations 
output <output_terminal_name>; 
input <input_terminal_names>; 
reg <output_terminal_name>;(optional; only for sequential 
                                       UDP) 
 
 
// UDP initialization (optional; only for sequential UDP 
initial <output_terminal_name> = <value>; 
 
 
//UDP state table 
table 
    <table entries> 
endtable 
 
 
//End of UDP definition 
endprimitive 
  
 
A UDP definition starts with the keyword primitive. The primitive name, output terminal, 
and input terminals are specified. Terminals are declared as output or input in the 
terminal declarations section. For a sequential UDP, the output terminal is declared as a 
reg. For sequential UDPs, there is an optional initial statement that initializes the output 
terminal of the UDP. The UDP state table is most important part of the UDP. It begins 
with the keyword table and ends with the keyword endtable. The table defines how the 
output will be computed from the inputs and current state. The table is modeled as a 
lookup table. and the table entries resemble entries in a logic truth table. Primitive 
definition is completed with the keyword endprimitive. 
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12.1.2 UDP Rules 
  
 
UDP definitions follow certain rules: 
  

1. UDPs can take only scalar input terminals (1 bit). Multiple input terminals are 
permitted. 

 
2. UDPs can have only one scalar output terminal (1 bit). The output terminal must 

always appear first in the terminal list. Multiple output terminals are not allowed.
 

3. In the declarations section, the output terminal is declared with the keyword 
output. Since sequential UDPs store state, the output terminal must also be 
declared as a reg. 

 
4. The inputs are declared with the keyword input. 

 
5. The state in a sequential UDP can be initialized with an initial statement. This 

statement is optional. A 1-bit value is assigned to the output, which is declared as 
reg. 

 
6. The state table entries can contain values 0, 1, or x. UDPs do not handle z values. 

z values passed to a UDP are treated as x values. 
 

7. UDPs are defined at the same level as modules. UDPs cannot be defined inside 
modules. They can be instantiated only inside modules. UDPs are instantiated 
exactly like gate primitives. 

 
8. UDPs do not support inout ports. 

  
 
Both combinational and sequential UDPs must follow the above rules. In the following 
sections, we will discuss the details of combinational and sequential UDPs. 
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12.2 Combinational UDPs 
  
 
Combinational UDPs take the inputs and produce the output value by looking up the 
corresponding entry in the state table. 
  
12.2.1 Combinational UDP Definition 
  
 
The state table is the most important part of the UDP definition. The best way to explain 
a state table is to take the example of an and gate modeled as a UDP. Instead of using the 
and gate provided by Verilog, let us define our own and gate primitive and call it 
udp_and. 
  
Example 12-1 Primitive udp_and 
  
//Primitive name and terminal list 
primitive udp_and(out, a, b); 
 
//Declarations 
output out; //must not be declared as reg for combinational UDP 
input a, b; //declarations for inputs. 
 
//State table definition; starts with keyword table 
table 
   //The following comment is for readability only 
   //Input entries of the state table must be in the 
   //same order as the input terminal list. 
  // a   b   :   out; 
     0   0   :   0; 
     0   1   :   0; 
     1   0   :   0; 
     1   1   :   1; 
 
endtable //end state table definition 
 
endprimitive //end of udp_and definition 
  
 
Compare parts of udp_and defined above with the parts discussed in Figure 12-1. The 
missing parts are that the output is not declared as reg and the initial statement is absent. 
Note that these missing parts are used only for sequential UDPs, which are discussed 
later in the chapter. 
  
 
ANSI C style declarations for UDPs are also supported. This style allows the declarations 
of a primitive port to be combined with the port list. Example 12-2 shows an example of 
an ANSI C style UDP declaration. 
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Example 12-2 ANSI C Style UDP Declaration 
  
//Primitive name and terminal list 
primitive udp_and(output out, 
                  input a, 
                  input b); 
-- 
-- 
endprimitive //end of udp_and definition 
  
12.2.2 State Table Entries 
  
 
In order to understand how state table entries are specified, let us take a closer look at the 
state table for udp_and. Each entry in the state table in a combinational UDP has the 
following pseudosyntax: 
  
<input1> <input2> ..... <inputN> : <output>; 
  
 
Note the following points about state table entries: 
  

1. The <input#> values in a state table entry must appear in the same order as they 
appear in the input terminal list. It is important to keep this in mind while 
designing UDPs, because designers frequently make mistakes in the input order 
and get incorrect results. 

 
2. Inputs and output are separated by a ":". 

 
3. A state table entry ends with a ";". 

 
4. All possible combinations of inputs, where the output produces a known value, 

must be explicitly specified. Otherwise, if a certain combination occurs and the 
corresponding entry is not in the table, the output is x. Use of default x output is 
frequently used in commercial models. Note that the table for udp_and does not 
handle the case when a or b is x. 

  
 
In the Verilog and gate, if a = x and b = 0, the result should be 0, but udp_and will give 
an x as output because the corresponding entry was not found in the state table, that is, 
the state table was incompletely specified. To understand how to completely specify all 
possible combinations in a UDP, let us define our own or gate udp_or, which completely 
specifies all possible cases. The UDP definition for udp_or is shown in Example 12-3. 
  
Example 12-3 Primitive udp_or 
  
primitive udp_or(out, a, b); 
 
output out; 
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input a, b; 
 
table 
  //  a   b   :   out; 
      0   0   :   0; 
      0   1   :   1; 
      1   0   :   1; 
      1   1   :   1; 
      x   1   :   1; 
      1   x   :   1; 
endtable 
 
endprimitive 
  
 
Notice that the above example covers all possible combinations of a and b where the 
output is not x. The value z is not allowed in a UDP. The z values on inputs are treated as 
x values. 
  
12.2.3 Shorthand Notation for Don't Cares 
  
 
In the above example, whenever one input is 1, the result of the OR operation is 1, 
regardless of the value of the other input. The ? symbol is used for a don't care condition. 
A ? symbol is automatically expanded to 0, 1, or x. The or gate described above can be 
rewritten with the ? symbol. 
  
primitive udp_or(out, a, b); 
 
output out; 
input a, b; 
 
table 
  //  a   b   :   out; 
      0   0   :   0; 
      1   ?   :   1; //? expanded to 0, 1, x 
      ?   1   :   1; //? expanded to 0, 1, x 
      0   x   :   x; 
      x   0   :   x; 
endtable 
 
endprimitive 
  
12.2.4 Instantiating UDP Primitives 
  
 
Having discussed how to define combinational UDPs, let us take a look at how UDPs are 
instantiated. UDPs are instantiated exactly like Verilog gate primitives. Let us design a 1-
bit full adder with the udp_and and udp_or primitives defined earlier. The 1-bit full adder 
code shown in Example 12-4 is identical to Example 5-7 on page 75 except that the 
standard Verilog primitives and and or primitives are replaced with udp_and and upd_or 
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primitives. 
  
Example 12-4 Instantiation of udp Primitives 
  
// Define a 1-bit full adder 
module fulladd(sum, c_out, a, b, c_in); 
 
// I/O port declarations 
output sum, c_out; 
input a, b, c_in; 
 
// Internal nets 
wire s1, c1, c2; 
 
// Instantiate logic gate primitives 
xor (s1, a, b);//use Verilog primitive 
udp_and (c1, a, b); //use UDP 
 
xor (sum, s1, c_in); //use Verilog primitive 
udp_and (c2, s1, c_in); //use UDP 
 
udp_or  (c_out, c2, c1);//use UDP 
 
endmodule 
  
12.2.5 Example of a Combinational UDP 
  
 
We discussed two small examples of combinational UDPs: udp_and and udp_or. Let us 
design a bigger combinational UDP, a 4-to-1 multiplexer. A 4-to-1 multiplexer was 
designed with gates in Section 5.1.4, Examples. In this section, we describe the 
multiplexer as a UDP. Note that the multiplexer is ideal because it has only one output 
terminal. The block diagram and truth table for the multiplexer are shown in Figure 12-2.
  

 
Figure 12-2. 4-to-1 Multiplexer with UDP 
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The multiplexer has six inputs and one output. The Verilog UDP description for the 
multiplexer is shown in Example 12-5. 
  
Example 12-5 Verilog Description of 4-to-1 Multiplexer with UDP 
  
// 4-to-1 multiplexer. Define it as a primitive 
primitive mux4_to_1 ( output out, 
                      input i0, i1, i2, i3, s1, s0); 
table 
  //  i0  i1  i2  i3, s1  s0  : out 
      1   ?   ?   ?   0   0   : 1 ; 
      0   ?   ?   ?   0   0   : 0 ; 
      ?   1   ?   ?   0   1   : 1 ; 
      ?   0   ?   ?   0   1   : 0 ; 
      ?   ?   1   ?   1   0   : 1 ; 
      ?   ?   0   ?   1   0   : 0 ; 
      ?   ?   ?   1   1   1   : 1 ; 
      ?   ?   ?   0   1   1   : 0 ; 
      ?   ?   ?   ?   x   ?   : x ; 
      ?   ?   ?   ?   ?   x   : x ; 
endtable 
 
endprimitive 
  
 
It is important to note that the state table becomes large very quickly as the number of 
inputs increases. Memory requirements to simulate UDPs increase exponentially with the 
number of inputs to the UDP. However, UDPs offer a convenient feature to implement an 
arbitrary function whose truth table is known, without extracting actual logic and by 
using logic gates to implement the circuit. 
  
 
The stimulus shown in Example 12-6 is applied to test the multiplexer. 
  
Example 12-6 Stimulus for 4-to-1 Multiplexer with UDP 
  
// Define the stimulus module (no ports) 
module stimulus; 
 
// Declare variables to be connected 
// to inputs 
reg IN0, IN1, IN2, IN3; 
reg S1, S0; 
 
// Declare output wire 
wire OUTPUT; 
 
// Instantiate the multiplexer 
mux4_to_1 mymux(OUTPUT, IN0, IN1, IN2, IN3, S1, S0); 
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// Stimulate the inputs 
initial 
begin 
  // set input lines 
  IN0 = 1; IN1 = 0; IN2 = 1; IN3 = 0; 
  #1 $display("IN0= %b, IN1= %b, IN2= %b, IN3= %b\n",IN0,IN1,IN2,IN3); 
// choose IN0 
  S1 = 0; S0 = 0; 
  #1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT); 
 
  // choose IN1 
  S1 = 0; S0 = 1; 
  #1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT); 
 
  // choose IN2 
  S1 = 1; S0 = 0; 
  #1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT); 
 
  // choose IN3 
  S1 = 1; S0 = 1; 
  #1 $display("S1 = %b, S0 = %b, OUTPUT = %b \n", S1, S0, OUTPUT); 
end 
 
endmodule 
  
 
The output of the simulation is shown below. 
  
IN0= 1, IN1= 0, IN2= 1, IN3= 0 
 
S1 = 0, S0 = 0, OUTPUT = 1 
 
S1 = 0, S0 = 1, OUTPUT = 0 
 
S1 = 1, S0 = 0, OUTPUT = 1 
 
S1 = 1, S0 = 1, OUTPUT = 0 
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12.3 Sequential UDPs 
  
 
Sequential UDPs differ from combinational UDPs in their definition and behavior. 
Sequential UDPs have the following differences: 
  

• The output of a sequential UDP is always declared as a reg. 
 

• An initial statement can be used to initialize output of sequential UDPs. 
 

• The format of a state table entry is slightly different. 
 

• <input1> <input2> ..... <inputN> : <current_state> : 
<next_state>; 

 

• There are three sections in a state table entry: inputs, current state, and next state. 
The three sections are separated by a colon (:) symbol. 

 
• The input specification of state table entries can be in terms of input levels or 

edge transitions. 
 

• The current state is the current value of the output register. 
 

• The next state is computed based on inputs and the current state. The next state 
becomes the new value of the output register. 

 
• All possible combinations of inputs must be specified to avoid unknown output 

values. 
  
 
If a sequential UDP is sensitive to input levels, it is called a level-sensitive sequential 
UDP. If a sequential UDP is sensitive to edge transitions on inputs, it is called an edge-
sensitive sequential UDP. 
  
12.3.1 Level-Sensitive Sequential UDPs 
  
 
Level-sensitive UDPs change state based on input levels. Latches are the most common 
example of level-sensitive UDPs. A simple latch with clear is shown in Figure 12-3. 
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Figure 12-3. Level-Sensitive Latch with clear 
  

 
 
In the level-sensitive latch shown above, if the clear input is 1, the output q is always 0. If 
clear is 0, q = d when clock = 1. If clock = 0, q retains its value. The latch can be 
described as a UDP as shown in Example 12-7. Note that the dash "-" symbol is used to 
denote no change in the state of the latch. 
  
Example 12-7 Verilog Description of Level-Sensitive UDP 
  
//Define level-sensitive latch by using UDP. 
primitive latch(q, d, clock, clear); 
 
//declarations 
output q; 
reg q; //q declared as reg to create internal storage 
input d, clock, clear; 
 
//sequential UDP initialization 
//only one initial statement allowed 
initial 
    q = 0; //initialize output to value 0 
 
//state table 
table 
  //d clock clear : q : q+ ; 
 
    ?   ?   1     : ? : 0 ; //clear condition; 
                            //q+ is the new output value 
 
    1   1   0     : ? : 1 ; //latch q = data  = 1 
    0   1   0     : ? : 0 ; //latch q = data  = 0 
 
    ?   0   0     : ? : - ; //retain original state if clock = 0 
endtable 
 
endprimitive 
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Sequential UDPs can include the reg declaration in the port list using an ANSI C style 
UDP declaration. They can also initialize the value of the output in the port declaration. 
Example 12-8 shows an example of an ANSI C style declaration for sequential UDPs. 
  
Example 12-8 ANSI C Style Port Declaration for Sequential UDP 
  
//Define level-sensitive latch by using UDP. 
primitive latch(output reg q = 0, 
                input d, clock, clear); 
-- 
-- 
-- 
endprimitive 
  
12.3.2 Edge-Sensitive Sequential UDPs 
  
 
Edge-sensitive sequential UDPs change state based on edge transitions and/or input 
levels. Edge-triggered flipflops are the most common example of edge-sensitive 
sequential UDPs. Consider the negative edge-triggered D-flipflop with clear shown in 
Figure 12-4. 
  

 
Figure 12-4. Edge-Sensitive D-flipflop with clear 

  

 
 
In the edge-sensitive flipflop shown above, if clear =1, the output q is always 0. If clear = 
0, the D-flipflop functions normally. On the negative edge of clock, i.e., transition from 1 
to 0, q gets the value of d. If clock transitions to an unknown state or on a positive edge 
of clock, do not change the value of q. Also, if d changes when clock is steady, hold 
value of q. 
  
 
The Verilog UDP description for the D-flipflop is shown in Example 12-9. 
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Example 12-9 Negative Edge-Triggered D-flipflop with clear 
  
//Define an edge-sensitive sequential UDP; 
primitive edge_dff(output reg q = 0, 
                   input d, clock, clear); 
 
 
table 
    //  d clock clear : q : q+  ; 
 
        ?   ?     1   : ? : 0 ; //output = 0 if clear = 1 
        ?   ?     (10): ? : - ; //ignore negative transition of clear 
 
        1   (10)  0   : ? : 1 ; //latch data on negative transition of 
        0   (10)  0   : ? : 0 ; //clock 
 
        ?   (1x)  0   : ? : - ; //hold q if clock transitions to 
unknown 
                                //state 
 
        ?   (0?)  0   : ? : - ; //ignore positive transitions of clock 
        ?   (x1)  0   : ? : - ; //ignore positive transitions of clock 
 
        (??) ?    0     : ? : - ; //ignore any change in d when clock 
                                 //is steady 
endtable 
 
endprimitive 
  
 
In Example 12-9, edge transitions are explained as follows: 
  

• (10) denotes a negative edge transition from logic 1 to logic 0. 
 

• (1x) denotes a transition from logic 1 to unknown x state. 
 

• (0?) denotes a transition from 0 to 0, 1, or x. Potential positive-edge transition. 
 

• (??) denotes any transition in signal value 0,1, or x to 0, 1, or x. 
 
It is important to completely specify the UDP by covering all possible combinations of 
transitions and levels in the state table for which the outputs have a known value. 
Otherwise, some combinations may result in an unknown value. Only one edge 
specification is allowed per table entry. More than one edge specification in a single table 
entry, as shown below, is illegal in Verilog. 
  
table 
... 
        (01) (10)  0   : ? : 1 ; //illegal; two edge transitions in an 
entry 
... 
endtable 
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12.3.3 Example of a Sequential UDP 
  
 
We discussed small examples of sequential UDPs. Let now describe a slightly bigger 
example, a 4-bit binary ripple counter. A 4-bit binary ripple counter was designed with T-
flipflops in Section 6.5.3, Ripple Counter. The T-flipflops were built with negative edge-
triggered D-flipflops. Instead, let us define the T-flipflop directly as a UDP primitive. 
The UDP definition for the T-flipflop is shown in Example 12-10. 
  
Example 12-10 T-Flipflop with UDP 
  
// Edge-triggered T-flipflop 
primitive T_FF(output reg q, 
               input clk, clear); 
 
//no initialization of q; TFF will be initialized with clear signal 
 
table 
  //  clk   clear :   q   : q+ ; 
      //asynchronous clear condition 
      ?       1   :   ?   : 0 ; 
 
      //ignore negative edge of clear 
      ?     (10)  :   ?   : - ; 
 
      //toggle flipflop at negative edge of clk 
      (10)    0   :   1   : 0 ; 
      (10)    0   :   0   : 1 ; 
 
      //ignore positive edge of clk 
      (0?)    0   :   ?   : - ; 
endtable 
endprimitive 
  
 
To build the ripple counter with T-flipflops, four T-flipflops are instantiated in the ripple 
counter, as shown in Example 12-11. 
  
Example 12-11 Instantiation of T_FF UDP in Ripple Counter 
  
// Ripple counter 
module counter(Q , clock, clear); 
 
// I/O ports 
output [3:0] Q; 
input clock, clear; 
 
// Instantiate the T flipflops 
// Instance names are optional 
T_FF tff0(Q[0], clock, clear); 
T_FF tff1(Q[1], Q[0], clear); 
T_FF tff2(Q[2], Q[1], clear); 
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T_FF tff3(Q[3], Q[2], clear); 
 
endmodule 
  
 
If stimulus shown in Example 6-9 on page 113 is applied to the counter, identical 
simulation output will be obtained. 
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12.4 UDP Table Shorthand Symbols 
  
 
Shorthand symbols for levels and edge transitions are provided so UDP tables can be 
written in a concise manner. We already discussed the symbols ? and -. A summary of all 
shorthand symbols and their meaning is shown in Table 12-1. 
  
Table 12-1. UDP Table Shorthand Symbols 
Shorthand 
Symbols Meaning Explanation 

? 0, 1, x Cannot be specified in an output field 

b 0, 1 Cannot be specified in an output field 

- No change in state 
value 

Can be specified only in output field of a 
sequential UDP 

r (01) Rising edge of signal 

f (10) Falling edge of signal 

p (01), (0x) or (x1) Potential rising edge of signal 

n (10), (1x) or (x0) Potential falling edge of signal 

* (??) Any value change in signal 
 
Using the shorthand symbols, we can rewrite the table entries in Example 12-9 on page 
263 as follows. 
  
table 
    //  d clock clear : q : q+  ; 
 
       ?   ?     1   : ? : 0 ; //output = 0 if clear = 1 
       ?   ?     f   : ? : - ; //ignore negative transition of clear 
 
       1   f     0   : ? : 1 ; //latch data on negative transition of 
       0   f     0   : ? : 0 ; //clock 
 
       ?   (1x)  0   : ? : - ; //hold q if clock transitions to unknown
                                        //state 
 
       ?   p     0   : ? : - ; //ignore positive transitions of clock 
 
       *   ?    0   : ? : - ; //ignore any change in d when 
                           //clock is steady 
endtable 
  
Note that the use of shorthand symbols makes the entries more readable and more 
concise.  
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12.5 Guidelines for UDP Design 
  
 
When designing a functional block, it is important to decide whether to model it as a 
module or as a user-defined primitive. Here are some guidelines used to make that 
decision. 
 

• UDPs model functionality only. They do not model timing or process technology 
(such as CMOS, TTL, ECL). The primary purpose of a UDP is to define in a 
simple and concise form the functional portion of a block. A module is always 
used to model a complete block that has timing and process technology. 

 
• A block can modeled as a UDP only if it has exactly one output terminal. If the 

block to be designed has more than one output, it has to be modeled as a module. 
 

• The limit on the maximum number of inputs of a UDP is specific to the Verilog 
simulator being used. However, Verilog simulators are required to allow a 
minimum of 9 inputs for sequential UDPs and 10 for combinational UDPs. 

 
• A UDP is typically implemented as a lookup table in memory. As the number of 

inputs increases, the number of table entries grows exponentially. Thus, the 
memory requirement for a UDP grows exponentially in relation to the number of 
inputs. It is not advisable to design a block with a large number of inputs as a 
UDP. 

 
• UDPs are not always the appropriate method to design a block. Sometimes it is 

easier to design blocks as a module. For example, it is not advisable to design an 
8-to-1 multiplexer as a UDP because of the large number of table entries. Instead, 
the data flow or behavioral representation would be much simpler. It is important 
to consider complexity trade-offs to decide whether to use UDP to represent a 
block. 

  
 
There are also some guidelines for writing the UDP state table. 
  

• The UDP state table should be specified as completely as possible. All possible 
input combinations for which the output is known should be covered. If a certain 
combination of inputs is not specified, the default output value for that 
combination will be x. This feature is used frequently in commercial libraries to 
reduce the number of table entries. 

 
• Shorthand symbols should be used to combine table entries wherever possible. 

Shorthand symbols make the UDP description more concise. However, the 
Verilog simulator may internally expand the table entries. Thus, there is no 
memory requirement reduction by using shorthand symbols. 
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• Level-sensitive entries take precedence over edge sensitive entries. If edge-
sensitive and level-sensitive entries clash on the same inputs, the output is 
determined by the level-sensitive entry because it has precedence over the edge-
sensitive entry. 
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12.6 Summary 
  
 
We discussed the following aspects of Verilog in this chapter: 
  

• User-defined primitives (UDP) are used to define custom Verilog primitives by 
the use of lookup tables. UDPs offer a convenient way to design certain functional 
blocks. 

 
• UDPs can have only one output terminal. UDPs are defined at the same level as 

modules. UDPs are instantiated exactly like gate primitives. A state table is the 
most important component of UDP specification. 

 
• UDPs can be combinational or sequential. Sequential UDPs can be edge- or level-

sensitive. 
 

• Combinational UDPs are used to describe combinational circuits where the output 
is purely a logical combination of the inputs. 

 
• Sequential UDPs are used to define blocks with timing controls. Blocks such as 

latches or flipflops can be described with sequential UDPs. Sequential UDPs are 
modeled like state machines. There is a present state and a next state. The next 
state is also the output of the UDP. Edge- and level-sensitive descriptions can be 
mixed. 

 
• Shorthand symbols are provided to make UDP state table entries more concise. 

Shorthand notation should be used wherever possible. 
 

• It is important to decide whether a functional block should be described as a UDP 
or as a module. Memory requirements and complexity trade-offs must be 
considered. 
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12.7 Exercises 
  
 

1: Design a 2-to-1 multiplexer by using UDP. The select signal is s, inputs are i0, 
i1, and the output is out. If the select signal s = x, the output out is always 0. If s 
= 0, then out = i0. If s = 1, then out = i1. 

2: Write the truth table for the boolean function Y = (A & B) | (C ^ D). Define a 
UDP that implements this boolean function. Assume that the inputs will never 
take the value x. 

3: Define a level-sensitive latch with a preset signal. Inputs are d, clock, and 
preset. Output is q. If clock = 0, then q = d. If clock = 1 or x, then q is 
unchanged. If preset = 1, then q = 1. If preset = 0, then q is decided by clock 
and d signals. If preset = x, then q = x. 
  

 

4: Define a positive edge-triggered D-flipflop with clear as a UDP. Signal clear is 
active low. Use Example 12-9 on page 263 as a guideline. Use shorthand 
notation wherever possible. 

5: Define a negative edge-triggered JK flipflop, jk_ff with asynchronous preset 
and clear as a UDP. q = 1 when preset = 1 and q = 0 when clear = 1. 
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The table for a JK flipflop is shown below. 
  

 

6: Design the 4-bit synchronous counter shown below. Use the UDP jk_ff that was 
defined above. 
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Chapter 13. Programming Language 
Interface 
  
 
Verilog provides the set of standard system tasks and functions defined in Appendix C, 
List of Keywords, System Tasks, and Compiler Directives. However, designers 
frequently need to customize the capability of the Verilog language by defining their own 
system tasks and functions. To do this, the designers need to interact with the internal 
representation of the design and the simulation environment in the Verilog simulator. The 
Programming Language Interface (PLI) provides a set of interface routines to read 
internal data representation, write to internal data representation, and extract information 
about the simulation environment. User-defined system tasks and functions can be 
created with this predefined set of PLI interface routines. 
  
 
Verilog Programming Language Interface is a very broad area of study. Thus, only the 
basics of Verilog PLI are covered in this chapter. Designers should consult the IEEE 
Standard Verilog Hardware Description Language document for complete details of the 
PLI. 
  
 
There are three generations of the Verilog PLI. 
  

1. Task/Function (tf_) routines make up the first generation PLI. These routines are 
primarily used for operations involving user-defined task/function arguments, 
utility functions, callback mechanism, and writing data to output devices. 

 
2. Access (acc_) routines make up the second-generation PLI. These routines are 

provide object-oriented access directly into a Verilog HDL structural description. 
These routines can be used to access and modify a wide variety of objects in the 
Verilog HDL description. 

 
3. Verilog Procedural Interface (vpi_) routines make up the third-generation PLI. 

These routines are a superset of the functionality of acc_ and tf_ routines. 
  
 
For the sake of simplicity, we will discuss only acc_ and tf_ routines in this chapter. 
  
 
Learning Objectives 
  

• Explain how PLI routines are used in a Verilog simulation. 
 

• Describe the uses of the PLI. 
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• Define user-defined system tasks and functions and user-defined C routines. 
 

• Understand linking and invocation of user-defined system tasks. 
 

• Explain how the PLI is represented conceptually inside a Verilog simulator. 
 

• Identify and describe how to use the two classes of PLI library routines: access 
routines and utility routines. 

 
• Learn to create user-defined system tasks and functions and use them in 

simulation. 
  
 
The first step is to understand how PLI tasks fit into the Verilog simulation. A sample 
simulation flow using PLI routines is shown in Figure 13-1. 
  

 
Figure 13-1. PLI Interface 
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A designer describes the design and stimulus by using standard Verilog constructs and 
system tasks. In addition, user-defined system tasks can also be invoked in the design and 
stimulus. The design and stimulus are compiled and converted to an internal design 
representation. The internal design representation is typically in the Verilog simulator 
proprietary format and is incomprehensible to the designer. The internal representation is 
then used to run the actual simulation and produce output. 
  
 
Each of the user-defined system tasks is linked to a user-defined C routine. The C 
routines are described by means of a standard library of PLI interface routines, which can 
access the internal design representation, and the standard C routines available with the C 
compiler. The standard PLI library is provided with the Verilog simulator. A list of PLI 
library routines is provided in Appendix B, List of PLI Routines. The PLI interface 
allows the user to do the following: 
  

• Read internal data structures 
 

• Modify internal data structures 
 

• Access simulation environment 
  
 
Without the PLI interface, the designer would have to understand the format of the 
internal design representation to access it. PLI provides a layer of abstraction that allows 
access to internal data structures through an interface that is uniform for all simulators. 
The user-defined system tasks will work even if the internal design representation format 
of the Verilog simulator is changed or if a new Verilog simulator is used. 
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13.1 Uses of PLI 
  
 
PLI provides a powerful capability to extend the Verilog language by allowing users to 
define their own utilities to access the internal design representation. PLI has various 
applications. 
  

• PLI can be used to define additional system tasks and functions. Typical examples 
are monitoring tasks, stimulus tasks, debugging tasks, and complex operations 
that cannot be implemented with standard Verilog constructs. 

 
• Application software like translators and delay calculators can be written with 

PLI. 
 

• PLI can be used to extract design information such as hierarchy, connectivity, 
fanout, and number of logic elements of a certain type. 

 
• PLI can be used to write special-purpose or customized output display routines. 

Waveform viewers can use this file to generate waveforms, logic connectivity, 
source level browsers, and hierarchy information. 

 
• Routines that provide stimulus to the simulation can be written with PLI. The 

stimulus could be automatically generated or translated from some other form of 
stimulus. 

 
• General Verilog-based application software can be written with PLI routines. This 

software will work with all Verilog simulators because of the uniform access 
provided by the PLI interface. 
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13.2 Linking and Invocation of PLI Tasks 
  
 
Designers can write their own user-defined system tasks by using PLI library routines. 
However, the Verilog simulator must know about the existence of the user-defined 
system task and its corresponding user-defined C function. This is done by linking the 
user-defined system task into the Verilog simulator. 
  
 
To understand the process, let us consider the example of a simple system task 
$hello_verilog. When invoked, the task simply prints out a message "Hello Verilog 
World". First, the C routine that implements the task must be defined with PLI library 
routines. The C routine hello_verilog in the file hello_verilog.c is shown below. 
  
#include "veriuser.h" /*include the file provided in release dir */ 
 
int hello_verilog() 
{ 
    io_printf("Hello Verilog World\n"); 
} 
  
 
The hello_verilog routine is fairly straightforward. The io_printf is a PLI library routine 
that works exactly like printf. 
  
 
The following sections show the steps involved in defining and using the new 
$hello_verilog system task. 
  
13.2.1 Linking PLI Tasks 
  
 
Whenever the task $hello_verilog is invoked in the Verilog code, the C routine 
hello_verilog must be executed. The simulator needs to be aware that a new system task 
called $hello_verilog exists and is linked to the C routine hello_verilog. This process is 
called linking the PLI routines into the Verilog simulator. Different simulators provide 
different mechanisms to link PLI routines. Also, though the exact mechanics of the 
linking process might be different for simulators, the fundamentals of the linking process 
remain the same. For details, refer to the latest reference manuals available with your 
simulator. 
  
 
At the end of the linking step, a special binary executable containing the new 
$hello_verilog system task is created. For example, instead of the usual simulator binary 
executable, a new binary executable hverilog is produced. To simulate, run hverilog 
instead of your usual simulator executable file. 
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 13.2.2 Invoking PLI Tasks 
  
Once the user-defined task has been linked into the Verilog simulator, it can be invoked 
like any Verilog system task by the keyword $hello_verilog. A Verilog module hello_top, 
which calls the task $hello_verilog, is defined in file hello.v as shown below. 
  
module hello_top; 
 
initial 
    $hello_verilog; //Invoke the user-defined task $hello_verilog 
 
endmodule 
  
Output of the simulation is as follows: 
  
Hello Verilog World 
  
13.2.3 General Flow of PLI Task Addition and Invocation 
  
We discussed a simple example to illustrate how a user-defined system task is named, 
implemented in terms of a user-defined C routine, linked into the simulator, and invoked 
in the Verilog code. More complex PLI tasks discussed in the following sections will 
follow the same process. Figure 13-2 summarizes the general process of adding and 
invoking a user-defined system task. 
  
Figure 13-2. General Flow of PLI Task Addition and Invocation 
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13.3 Internal Data Representation 
  
 
Before we understand how to use PLI library routines, it is first necessary to describe 
how a design is viewed internally in the simulator. Each module is viewed as a collection 
of object types. Object types are elements defined in Verilog, such as: 
  

• Module instances, module ports, module pin-to-pin paths, and intermodule paths 
 

• Top-level modules 
 

• Primitive instances, primitive terminals 
 

• Nets, registers, parameters, specparams 
 

• Integer, time, and real variables 
 

• Timing checks 
 

• Named events 
  
Each object type has a corresponding set that identifies all objects of that type in the 
module. Sets of all object types are interconnected. 
  
A conceptual internal representation of a module is shown in Figure 13-3. 
  

Figure 13-3. Conceptual Internal Representation a Module 
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Each set contains all elements of that object type in the module. All sets are 
interconnected. The connections between the sets are bidirectional. The entire internal 
representation can be traversed by using PLI library routines to obtain information about 
the module. PLI library routines are discussed later in the chapter. 
  
 
To illustrate the internal data representation, consider the example of a simple 2-to-1 
multiplexer whose gate level circuit is shown in Figure 13-4. 
  

 
Figure 13-4. 2-to-1 Multiplexer 

  

 
 
The Verilog description of the circuit is shown in Example 13-1. 
  
Example 13-1 Verilog Description of 2-to-1 Multiplexer 
  
module mux2_to_1(out, i0, i1, s); 
 
output out; //output port 
input i0, i1; //input ports 
input s; 
 
wire sbar, y1, y2; //internal nets 
 
//Gate Instantiations 
not n1(sbar, s); 
and a1(y1, i0, sbar); 
and a2(y2, i1, s); 
or o1(out, y1, y2); 
 
endmodule 
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The internal data representation for the 2-to-1 multiplexer is shown in Figure 13-5. Sets 
are shown for primitive instances, primitive instance terminals, module ports, and nets. 
Other object types are not present in this module. 
  

 
Figure 13-5. Internal Data Representation of 2-to-1 Multiplexer 

  

 
 
The example shown above does not contain register, integers, module instances, and 
other object types. If they are present in a module definition, they are also represented in 
terms of sets. This description is a conceptual view of the internal structures. The exact 
implementation of data structures is simulator dependent. 
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13.4 PLI Library Routines 
  
 
PLI library routines provide a standard interface to the internal data representation of the 
design. The user-defined C routines for user-defined system tasks are written by using 
PLI library routines. In the example in Section 13.2, Linking and Invocation of PLI 
Tasks, $hello_verilog is the user-defined system task, hello_verilog is the user-defined C 
routine, and io_printf is a PLI library routine. 
  
 
There are two broad classes of PLI library routines: access routines and utility routines. 
(Note that vpi_ routines are a superset of access and utility routines and are not discussed 
in this book.) 
  
 
Access routines provide access to information about the internal data representation; they 
allow the user C routine to traverse the data structure and extract information about the 
design. Utility routines are mainly used for passing data across the Verilog/Programming 
Language Boundary and for miscellaneous housekeeping functions. Figure 13-6 shows 
the role of access and utility routines in PLI. 
  

 
Figure 13-6. Role of Access and Utility Routines 

  

 
 
A complete list of PLI library routines is provided in Appendix B, List of PLI Routines. 
The function and usage of each routine are also specified. 
  
13.4.1 Access Routines 
  
 
Access routines are also popularly called acc routines. Access routines can do the 
following: 
  

• Read information about a particular object from the internal data representation 
 

• Write information about a particular object into the internal data representation 
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We will discuss only reading of information from the design. Information about 
modifying internal design representation can be found in the Programming Language 
Interface (PLI) Manual. However, reading of information is adequate for most practical 
purposes. 
  
Access routines can read information about objects in the design. Objects can be one of 
the following types: 
  

• Module instances, module ports, module pin-to-pin paths, and intermodule paths 
 

• Top-level modules 
 

• Primitive instances, primitive terminals 
 

• Nets, registers, parameters, specparams 
 

• Integer, time, and real variables 
 

• Timing checks 
 

• Named events 
  
Mechanics of access routines 
  
Some observations about access routines are listed below. 
  

• Access routines always start with the prefix acc_. 
 

• A user-defined C routine that uses access routines must first initialize the 
environment by calling the routine acc_initialize(). When exiting, the user-defined 
C routine must call acc_close(). 

 
• If access routines are being used in a file, the header file acc_user.h must also be 

included. All access routine data types and constants are predefined in the file 
acc_user.h. 

 

• #include "acc_user.h" 
 
 

• Access routines use the concept of a handle to access an object. Handles are 
predefined data types that point to specific objects in the design. Any information 
about the object can be obtained once the object handle is obtained. This is similar 
to the concept of file handles for accessing files in C programs. An object handle 
identifier is declared with the keyword handle. 

  
handle top_handle; 
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Types of access routines 
  
 
We discuss six types of access routines. 
  

• Handle routines. They return handles to objects in the design. The name of handle 
routines always starts with the prefix acc_handle_. 

 
• Next routines. They return the handle to the next object in the set of a given object 

type in a design. Next routines always start with the prefix acc_next_ and accept 
reference objects as arguments. 

 
• Value Change Link (VCL) routines. They allow the user system task to add and 

delete objects from the list of objects that are monitored for value changes. VCL 
routines always begin with the prefix acc_vcl_ and do not return a value. 

 
• Fetch routines. They can extract a variety of information about objects. 

Information such as full hierarchical path name, relative name, and other 
attributes can be obtained. Fetch routines always start with the prefix acc_fetch_. 

 
• Utility access routines. They perform miscellaneous operations related to access 

routines. For example, acc_initialize() and acc_close() are utility routines. 
 

• Modify routines. They can modify internal data structures. We do not discuss 
them in this book. Refer to the IEEE Standard Verilog Hardware Description 
Language document for details about modify routines. 

  
 
A complete list of access routines and their usage is provided in Appendix B, List of PLI 
Routines. 
  
Examples of access routines 
  
 
We will discuss two examples that illustrate the use of access routines. The first example 
is a user-defined system task to find names of all ports in a module and count the number 
of ports. The second example is a user-defined system task that monitors the changes in 
values of nets. 
  
 
Example 1: Get Module Port List 
  
 
Let us write a user-defined system task $get_ports to find complete hierarchical names of 
input, output, and inout ports in a module and to count the number of input, output, and 
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inout ports. The user-defined system task will be invoked in Verilog as 
$get_ports("<hierarchical_module_name>"). The user-defined C routine get_ports, which 
implements the task $get_ports, is described in file get_ports.c. The file get_ports.c is 
shown in Example 13-3. 
  
Example 13-2 PLI Routine to get Module Port List 
  
#include "acc_user.h" 
 
int get_ports() 
{ 
  handle  mod, port; 
  int input_ctr = 0; 
  int output_ctr = 0; 
  int inout_ctr = 0; 
 
  acc_initialize(); 
 
  mod = acc_handle_tfarg(1); /* get a handle to the module instance 
                                first argument in the system task 
argument 
                                list */ 
 
  port = acc_handle_port(mod, 0); /* get the first port of the module 
*/ 
 
  while( port != null ) /* loop for all ports */ 
  { 
    if (acc_fetch_direction(port) == accInput) /* Input port */ 
    { 
        io_printf("Input Port %s \n", acc_fetch_fullname(port)); 
                                            /* full hierarchical name 
*/ 
 
        input_ctr++; 
    } 
    else if (acc_fetch_direction(port) == accOutput) /* Output port */ 
    { 
        io_printf("Output Port %s \n", acc_fetch_fullname(port)); 
        output_ctr++; 
    } 
    else if (acc_fetch_direction(port) == accInout) /* Inout port */ 
 { 
        io_printf("Inout Port %s \n", acc_fetch_fullname(port)); 
        inout_ctr++; 
    } 
 
    port = acc_next_port(mod, port); /* go to the next port */ 
  } 
 
  io_printf("Input Ports = %d Output Ports = %d, Inout ports = %d\n\n",
                        input_ctr, output_ctr, inout_ctr); 
  acc_close(); 
 
} 
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Notice that handle, fetch, next, and utility access routines are used to write the user C 
routine. 
  
 
Link the new task into the Verilog simulator as described in Section 13.2.1, Linking PLI 
Tasks. To check the newly defined task, we will use it to find out the port list of the 
module mux2_to_1 described in Example 13-1. A top-level module that instantiates the 
2-to-1 multiplexer and invokes the $get_ports task is shown below. 
  
module top; 
wire OUT; 
reg I0, I1, S; 
 
mux2_to_1 my_mux(OUT, I0, I1, S); /*Instantiate the 2-to-1 mux*/ 
 
initial 
begin 
  $get_ports("top.my_mux"); /*invoke task $get_ports to get port list*/
end 
 
endmodule 
  
 
Invocation of $get_ports causes the user C routine $get_ports to be executed. The output 
of the simulation is shown below. 
  
Output Port top.my_mux.out 
Input Port top.my_mux.i0 
Input Port top.my_mux.i1 
Input Port top.my_mux.s 
Input Ports = 3 Output Ports = 1, Inout ports = 0 
  
 
Example 2: Monitor Nets for Value Changes 
  
 
This example highlights the use of Value Change Link (VCL) routines. Instead of using 
the $monitor task provided with the Verilog simulator, let us define our own task to 
monitor specific nets in the design for value changes. The task 
$my_monitor("<net_name>"); is to be invoked to add a <net_name> to the monitoring 
list. 
  
 
The user-defined C routine my_monitor, which implements the user-defined system task, 
is shown in Example 13-3. 
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Example 13-3 PLI Routine to Monitor Nets for Value Changes 
  
#include "acc_user.h" 
 
char convert_to_char(); 
int display_net(); 
 
int my_monitor() 
{ 
  handle net; 
  char *netname ; /*pointer to store names of nets*/ 
  char *malloc(); 
 
  acc_initialize(); /*initialize environment*/ 
 
  net = acc_handle_tfarg(1); /*get a handle to the net to be 
monitored*/ 
 
  /*Find hierarchical name of net and store it*/ 
  netname = malloc(strlen(acc_fetch_fullname(net))); 
  strcpy(netname,  acc_fetch_fullname(net)); 
 
  /* Call the VCL routine to add a signal to the monitoring list*/ 
  /* Pass four arguments to acc_vcl_add task*/ 
  /* 1st : handle to the monitored object (net) 
     2nd : Consumer C routine to call when the object value changes 
(display_net) 
     3rd : String to be passed to consumer C routine (netname) 
     4th : Predefined VCL flags: vcl_verilog_logic for logic monitoring
                          vcl_verilog_strength for strength monitoring 
*/ 
  acc_vcl_add(net, display_net, netname, vcl_verilog_logic); 
 
  acc_close(); 
} 
  
Notice that the net is added to the monitoring list with the routine acc_vcl_add. A 
consumer routine display_net is an argument to acc_vcl_add. Whenever the value of the 
net changes, the acc_vcl_add calls the consumer routine display_net and passes a pointer 
to a data structure of the type p_vc_record. A consumer routine is a C routine that 
performs an action determined by the user whenever acc_vcl_add calls it. The 
p_vc_record is predefined in the acc_user.h file, as shown below. 
  
typedef struct t_vc_record{ 
    int vc_reason;    /*reason for value change*/ 
    int vc_hightime;  /*Higher 32 bits of 64-bit simulation time*/ 
    int vc_lowtime;   /*Lower 32 bits of 64-bit simulation time*/ 
    char *user_data;  /*String passed in 3rd argument of acc_vcl_add*/ 
    union  {          /*New value of the monitored signal*/ 
        unsigned char      logic_value; 
        double             real_value; 
        handle             vector_handle; 
        s_strengths        strengths_s; 
    } out_value; 
} *p_vc_record; 
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The consumer routine display_net simply displays the time of change, name of net, and 
new value of the net. The consumer routine is written as shown in Example 13-4. 
Another routine, convert_to_char, is defined to convert the logic value constants to an 
ASCII character. 
  
Example 13-4 Consumer Routine for VCL Example 
  
/*Consumer routine. Called whenever any monitored net changes*/ 
display_net(vc_record) 
p_vc_record vc_record; /*Structure p_vc_record predefined in 
                          acc_user.h*/ 
{ 
 
  /*Print time, name, and new value of the changed net */ 
  io_printf("%d New value of net %s is %c \n", 
                  vc_record->vc_lowtime, 
                  vc_record->user_data, 
                  convert_to_char(vc_record->out_value.logic_value)); 
} 
 
/*Miscellaneous routine to convert predefined character constant to 
  ASCII character*/ 
char convert_to_char(logic_val) 
char logic_val; 
{ 
  char temp; 
 
  switch(logic_val) 
  { 
    /*vcl0, vcl1, vclX and vclZ are predefined in acc_user.h*/ 
    case vcl0: temp='0'; 
               break; 
    case vcl1: temp='1'; 
               break; 
    case vclX: temp='X'; 
               break; 
    case vclZ: temp='Z'; 
               break; 
  } 
  return(temp); 
} 
  
Link the new task into the Verilog simulator as described in Section 13.2.1, Linking PLI 
Tasks. To check the newly defined task, we will use it to monitor nets sbar and y1 when 
stimulus is applied to module mux2_to_1 described in Example 13-1 on page 281. A top-
level module that instantiates the 2-to-1 multiplexer, applies stimulus, and invokes the 
$my_monitor task is shown below. 
  
module top; 
wire OUT; 
reg I0, I1, S; 
 
mux2_to_1 my_mux(OUT, I0, I1, S); //Instantiate the module mux2_to_1 



 
 
 

 
 

291

 
initial //Add nets to the monitoring list 
begin 
  $my_monitor("top.my_mux.sbar"); 
  $my_monitor("top.my_mux.y1"); 
end 
 
initial //Apply Stimulus 
begin 
  I0=1'b0; I1=1'b1; S = 1'b0; 
  #5 I0=1'b1; I1=1'b1; S = 1'b1; 
  #5 I0=1'b0; I1=1'b1; S = 1'bx; 
  #5 I0=1'b1; I1=1'b1; S = 1'b1; 
end 
 
endmodule 
  
 
The output of the simulation is shown below. 
  
0 New value of net top.my_mux.y1 is 0 
0 New value of net top.my_mux.sbar is 1 
5 New value of net top.my_mux.y1 is 1 
5 New value of net top.my_mux.sbar is 0 
5 New value of net top.my_mux.y1 is 0 
10 New value of net top.my_mux.sbar is X 
15 New value of net top.my_mux.y1 is X 
15 New value of net top.my_mux.sbar is 0 
15 New value of net top.my_mux.y1 is 0 
  
13.4.2 Utility Routines 
  
 
Utility routines are miscellaneous PLI routines that pass data in both directions across the 
Verilog/user C routine boundary. Utility routines are also popularly called "tf" routines. 
  
Mechanics of utility routines 
  
 
Some observations about utility routines are listed below. 
  

• Utility routines always start with the prefix tf_. 
 

• If utility routines are being used in a file, the header file veriuser.h must be 
included. All utility routine data types and constants are predefined in veriuser.h. 

  
#include "veriuser.h" 
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Types of utility routines 
  
 
Utility routines are available for the following purposes: 
  

• Get information about the Verilog system task invocation 
 

• Get argument list information 
 

• Get values of arguments 
 

• Pass back new values of arguments to calling system task 
 

• Monitor changes in values of arguments 
 

• Get information about simulation time and scheduled events 
•  

 
• Perform housekeeping tasks, such as saving work areas, and storing pointers to 

tasks 
 

• Do long arithmetic 
 

• Display messages 
 

• Halt, terminate, save, and restore simulation 
  
 
A list of utility routines, their function, and usage is provided in Appendix B. 
  
Example of utility routines 
  
 
Until now we encountered only one utility routine, io_printf(). Now we will look at a few 
more utility routines that allow passing of data between the Verilog design and the user-
defined C routines. 
  
 
Verilog provides the system tasks $stop and $finish that suspend and terminate the 
simulation. Let us define our own system task, $my_stop_finish, which does both 
stopping and finishing based on the arguments passed to it. The complete specifications 
for the user-defined system task $my_stop_finish are shown in Table 13-1. 
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Table 13-1. Specifications for $my_stop_finish 
 
1st 
Argument 

2nd 
Argument Action 

0 none Stop simulation. Display simulation time and message. 

1 none Finish simulation. Display simulation time and message. 

0 any value Stop simulation. Display simulation time, module 
instance from which stop was called, and message. 

1 any value Finish simulation. Display simulation time, module 
instance from which stop was called, and message. 

 
The source code for the user-defined C routine my_stop_finish is shown in Example 13-
5. 
  
Example 13-5 User C Routine my_stop_finish, Using Utility Routines 
  
#include "veriuser.h" 
 
int my_stop_finish() 
{ 
 
  if(tf_nump() == 1) /* if 1 argument is passed to the my_stop_finish 
                        task, display only simulation time and 
message*/ 
  { 
    if(tf_getp(1) == 0) /* get value of argument. If the argument 
                           is 0, then stop the simulation*/ 
    { 
      io_printf("Mymessage: Simulation stopped at time %d\n", 
                                    tf_gettime()); 
      tf_dostop(); /*stop the simulation*/ 
    } 
    else if(tf_getp(1) == 1)  /* if the argument is 0 then terminate 
                           the simulation*/ 
    { 
      io_printf("Mymessage: Simulation finished at time %d\n", 
                                    tf_gettime()); 
      tf_dofinish(); /*terminate the simulation*/ 
    } 
    else 
      /* Pass warning message */ 
      tf_warning("Bad arguments to \$my_stop_finish at time %d\n", 
                                                    tf_gettime()); 
  } 
 
  else if(tf_nump() == 2) /* if 1 argument is passed to the 
my_stop_finish 
                        task, then print module instance from which the
                        task was called, time and message */ 
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  { 
    if(tf_getp(1) == 0) /* if the argument is 0 then stop 
                           the simulation*/ 
    { 
      io_printf 
       ("Mymessage: Simulation stopped at time %d in instance  %s \n", 
                                    tf_gettime(), tf_mipname()); 
      tf_dostop(); /*stop the simulation*/ 
    } 
    else if(tf_getp(1) == 1)  /* if the argument is 0 then terminate 
                           the simulation*/ 
    { 
      io_printf 
       ("Mymessage: Simulation finished at time %d in instance  %s \n",
                                    tf_gettime(), tf_mipname()); 
      tf_dofinish(); /*terminate the simulation*/ 
    } 
    else 
      /* Pass warning message */ 
      tf_warning("Bad arguments to \$my_stop_finish at time %d\n", 
                                                    tf_gettime()); 
  } 
 
} 
  
 
Link the new task into the Verilog simulator as described in Section 13.2.1, Linking PLI 
Tasks. To check the newly defined task $my_stop_finish, a stimulus in which 
$my_stop_finish is called with all possible combinations of arguments is applied to the 
module mux2_to_1 described in Example 13-1 on page 281. A top-level module that 
instantiates the 2-to-1 multiplexer, applies stimulus, and invokes the $my_stop_finish 
task is shown below. 
  
module top; 
wire OUT; 
reg I0, I1, S; 
 
mux2_to_1 my_mux(OUT, I0, I1, S); //Instantiate the module mux2_to_1 
 
initial //Apply Stimulus 
begin 
  I0=1'b0; I1=1'b1; S = 1'b0; 
  $my_stop_finish(0); //Stop simulation. Don't print module instance 
name 
  #5 I0=1'b1; I1=1'b1; S = 1'b1; 
  $my_stop_finish(0,1); //Stop simulation. Print module instance name 
  #5 I0=1'b0; I1=1'b1; S = 1'bx; 
  $my_stop_finish(2,1); //Pass bad argument 2 to the task 
  #5 I0=1'b1; I1=1'b1; S = 1'b1; 
  $my_stop_finish(1,1); //Terminate simulation. Print module instance 
                          //name 
end 
 
endmodule 
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The output of the simulation with a Verilog simulator is shown below. 
  
Mymessage: Simulation stopped at time 0 
Type ? for help 
C1 > . 
Mymessage: Simulation stopped at time 5 in instance  top 
C1 > . 
"my_stop_finish.v", 14: warning! Bad arguments to $my_stop_finish at 
time 10 
 
Mymessage: Simulation finished at time 15 in instance  top 
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13.5 Summary 
  
In this chapter, we described the Programming Language Interface (PLI) for Verilog. The 
following aspects were discussed: 
  

• PLI Interface provides a set of C interface routines to read, write, and extract 
information about the internal data structures of the design. Designers can write 
their own system tasks to do various useful functions. 

 
• PLI Interface can be used for monitors, debuggers, translators, delay calculators, 

automatic stimulus generators, dump file generators, and other useful utilities. 
 

• A user-defined system task is implemented with a corresponding user-defined C 
routine. The C routine uses PLI library calls. 

 
• The process of informing the simulator that a new user-defined system task is 

attached to a corresponding user C routine is called linking. Different simulators 
handle the linking process differently. 

 
• User-defined system tasks are invoked like standard Verilog system tasks, e.g., 

$hello_verilog(); . The corresponding user C routine hello_verilog is executed 
whenever the task is invoked. 

 
• A design is represented internally in a Verilog simulator as a big data structure 

with sets for objects. PLI library routines allow access to the internal data 
structures. 

 
• Access (acc) routines and utility (tf) routines are two types of PLI library routines.

 
• Utility routines represent the first generation of Verilog PLI. Utility routines are 

used to pass data back and forth across the boundary of user C routines and the 
original Verilog design. Utility routines start with the prefix tf_. Utility routines 
do not interact with object handles. 

 
• Access routines represent the second generation of Verilog PLI. Access routines 

can read and write information about a particular object from/to the design. 
Access routines start with the prefix acc_. Access routines are used primarily 
across the boundary of user C routines and internal data representation. Access 
routines interact with object handles. 

 
• Value change link (VCL) is a special category of access routines that allow 

monitoring of objects in a design. A consumer routine is executed whenever the 
monitored object value changes. 

 
• Verilog Procedural Interface (VPI) routines represent the third generation of 
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Verilog PLI. VPI routines provide a superset of the functionality of acc_ and tf_ 
routines. VPI routines are not covered in this book. 

  
 
Programming Language Interface is a very broad area of study. Thus, only the basics of 
Verilog PLI are covered in this chapter. Designers should consult the IEEE Standard 
Verilog Hardware Description Language document for details of PLI. 
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13.6 Exercises 
  
 
Refer to Appendix B, List of PLI Routines and IEEE Standard Verilog Hardware 
Description Language document, for a list of PLI access and utility routines, their 
function, and usage. You will need to use some PLI library calls that were not discussed 
in this chapter. 
  
 

1: Write a user-defined system task, $get_in_ports, that gets full hierarchical 
names of only the input ports of a module instance. Hierarchical module 
instance name is the input to the task (Hint: Use the C routine in Example 13-2 
as a reference). Link the task into the Verilog simulator. Find the input ports of 
the 1-bit full adder defined in Example 5-7 on page 75. 

2: Write a user-defined system task, $count_and_gates, which counts the number 
of and gate primitives in a module instance. Hierarchical module instance name 
is the input to the task. Use this task to count the number of and gates in the 4-
to-1 multiplexer in Example 5-5. 

3: Create a user-defined system task, $monitor_mod_output, that finds out all the 
output signals of a module instance and adds them to a monitoring list. The line 
"Output signal has changed" should appear whenever any output signal of the 
module changes value. (Hint: Use VCL routines.) Use the 2-to-1 multiplexer in 
Example 13-1. Add output signals to the monitoring list by using 
$monitor_mod_output. Check results by applying stimulus. 
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Chapter 14. Logic Synthesis with Verilog 
HDL 
  
 
Advances in logic synthesis have pushed HDLs into the forefront of digital design 
technology. Logic synthesis tools have cut design cycle times significantly. Designers 
can design at a high level of abstraction and thus reduce design time. In this chapter, we 
discuss logic synthesis with Verilog HDL. Synopsys synthesis products were used for the 
examples in this chapter, and results for individual examples may vary with synthesis 
tools. However, the concepts discussed in this chapter are general enough to be applied to 
any logic synthesis tool.[1] This chapter is intended to give the reader a basic 
understanding of the mechanics and issues involved in logic synthesis. It is not intended 
to be comprehensive material on logic synthesis. Detailed knowledge of logic synthesis 
can be obtained from reference manuals, logic synthesis books, and by attending training 
classes. 
 
[1] Many EDA vendors now offer logic synthesis tools. Please see the reference 
documentation provided with your logic synthesis tool for details on how to synthesize 
RTL to gates. There may be minor variations from the material presented in this chapter. 
  
 
Learning Objectives 
  

• Define logic synthesis and explain the benefits of logic synthesis. 
 

• Identify Verilog HDL constructs and operators accepted in logic synthesis. 
Understand how the logic synthesis tool interprets these constructs. 

 
• Explain a typical design flow, using logic synthesis. Describe the components in 

the logic synthesis-based design flow. 
 

• Describe verification of the gate-level netlist produced by logic synthesis. 
 

• Understand techniques for writing efficient RTL descriptions. 
 

• Describe partitioning techniques to help logic synthesis provide the optimal gate-
level netlist. 

 
• Design combinational and sequential circuits, using logic synthesis. 
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14.1 What Is Logic Synthesis? 
  
Simply speaking, logic synthesis is the process of converting a high-level description of 
the design into an optimized gate-level representation, given a standard cell library and 
certain design constraints. A standard cell library can have simple cells, such as basic 
logic gates like and, or, and nor, or macro cells, such as adders, muxes, and special flip-
flops. A standard cell library is also known as the technology library. It is discussed in 
detail later in this chapter. 
 
Logic synthesis always existed even in the days of schematic gate-level design, but it was 
always done inside the designer's mind. The designer would first understand the 
architectural description. Then he would consider design constraints such as timing, area, 
testability, and power. The designer would partition the design into high-level blocks, 
draw them on a piece of paper or a computer terminal, and describe the functionality of 
the circuit. This was the high-level description. Finally, each block would be 
implemented on a hand-drawn schematic, using the cells available in the standard cell 
library. The last step was the most complex process in the design flow and required 
several time-consuming design iterations before an optimized gate-level representation 
that met all design constraints was obtained. Thus, the designer's mind was used as the 
logic synthesis tool, as illustrated in Figure 14-1. 
  

Figure 14-1. Designer's Mind as the Logic Synthesis Tool 
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The advent of computer-aided logic synthesis tools has automated the process of 
converting the high-level description to logic gates. Instead of trying to perform logic 
synthesis in their minds, designers can now concentrate on the architectural trade-offs, 
high-level description of the design, accurate design constraints, and optimization of cells 
in the standard cell library. These are fed to the computer-aided logic synthesis tool, 
which performs several iterations internally and generates the optimized gate-level 
description. Also, instead of drawing the high-level description on a screen or a piece of 
paper, designers describe the high-level design in terms of HDLs. Verilog HDL has 
become one of the popular HDLs for the writing of high-level descriptions. Figure 14-2 
illustrates the process. 
  

 
Figure 14-2. Basic Computer-Aided Logic Synthesis Process 
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Automated logic synthesis has significantly reduced time for conversion from high-level 
design representation to gates. This has allowed designers to spend more time on 
designing at a higher level of representation, because less time is required for converting 
the design to gates. 
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14.2 Impact of Logic Synthesis 
  
 
Logic synthesis has revolutionized the digital design industry by significantly improving 
productivity and by reducing design cycle time. Before the days of automated logic 
synthesis, when designs were converted to gates manually, the design process had the 
following limitations: 
  

• For large designs, manual conversion was prone to human error. A small gate 
missed somewhere could mean redesign of entire blocks. 

 
• The designer could never be sure that the design constraints were going to be met 

until the gate-level implementation was completed and tested. 
 

• A significant portion of the design cycle was dominated by the time taken to 
convert a high-level design into gates. 

 
• If the gate-level design did not meet requirements, the turnaround time for 

redesign of blocks was very high. 
 

• What-if scenarios were hard to verify. For example, the designer designed a block 
in gates that could run at a cycle time of 20 ns. If the designer wanted to find out 
whether the circuit could be optimized to run faster at 15 ns, the entire block had 
to be redesigned. Thus, redesign was needed to verify what-if scenarios. 

 
• Each designer would implement design blocks differently. There was little 

consistency in design styles. For large designs, this could mean that smaller 
blocks were optimized, but the overall design was not optimal. 

 
• If a bug was found in the final, gate-level design, this would sometimes require 

redesign of thousands of gates. 
 

• Timing, area, and power dissipation in library cells are fabrication-technology 
specific. Thus if the company changed the IC fabrication vendor after the gate-
level design was complete, this would mean redesign of the entire circuit and a 
possible change in design methodology. 

 
• Design reuse was not possible. Designs were technology-specific, hard to port, 

and very difficult to reuse. 
  
 
Automated logic synthesis tools addressed these problems as follows: 
  

• High-level design is less prone to human error because designs are described at a 
higher level of abstraction. 
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• High-level design is done without significant concern about design constraints. 

Logic synthesis will convert a high-level design to a gate-level netlist and ensure 
that all constraints have been met. If not, the designer goes back, modifies the 
high-level design and repeats the process until a gate-level netlist that satisfies 
timing, area, and power constraints is obtained. 

 
• Conversion from high-level design to gates is fast. With this improvement, design 

cycle times are shortened considerably. What took months before can now be 
done in hours or days. 

 
• Turnaround time for redesign of blocks is shorter because changes are required 

only at the register-transfer level; then, the design is simply resynthesized to 
obtain the gate-level netlist. 

•  
 

• What-if scenarios are easy to verify. The high-level description does not change. 
The designer has merely to change the timing constraint from 20 ns to 15 ns and 
resynthesize the design to get the new gate-level netlist that is optimized to 
achieve a cycle time of 15 ns. 

 
• Logic synthesis tools optimize the design as a whole. This removes the problem 

with varied designer styles for the different blocks in the design and suboptimal 
designs. 

 
• If a bug is found in the gate-level design, the designer goes back and changes the 

high-level description to eliminate the bug. Then, the high-level description is 
again read into the logic synthesis tool to automatically generate a new gate-level 
description. 

 
• Logic synthesis tools allow technology-independent design. A high-level 

description may be written without the IC fabrication technology in mind. Logic 
synthesis tools convert the design to gates, using cells in the standard cell library 
provided by an IC fabrication vendor. If the technology changes or the IC 
fabrication vendor changes, designers simply use logic synthesis to retarget the 
design to gates, using the standard cell library for the new technology. 

 
• Design reuse is possible for technology-independent descriptions. For example, if 

the functionality of the I/O block in a microprocessor does not change, the RTL 
description of the I/O block can be reused in the design of derivative 
microprocessors. If the technology changes, the synthesis tool simply maps to the 
desired technology. 
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14.3 Verilog HDL Synthesis 
  
 
For the purpose of logic synthesis, designs are currently written in an HDL at a register 
transfer level (RTL). The term RTL is used for an HDL description style that utilizes a 
combination of data flow and behavioral constructs. Logic synthesis tools take the 
register transfer-level HDL description and convert it to an optimized gate-level netlist. 
Verilog and VHDL are the two most popular HDLs used to describe the functionality at 
the RTL level. In this chapter, we discuss RTL-based logic synthesis with Verilog HDL. 
Behavioral synthesis tools that convert a behavioral description into an RTL description 
are slowly evolving, but RTL-based synthesis is currently the most popular design 
method. Thus, we will address only RTL-based synthesis in this chapter. 
  
14.3.1 Verilog Constructs 
  
 
Not all constructs can be used when writing a description for a logic synthesis tool. In 
general, any construct that is used to define a cycle-by-cycle RTL description is 
acceptable to the logic synthesis tool. A list of constructs that are typically accepted by 
logic synthesis tools is given in Table 14-1. The capabilities of individual logic synthesis 
tools may vary. The constructs that are typically acceptable to logic synthesis tools are 
also shown. 
  
 
Table 14-1. Verilog HDL Constructs for Logic Synthesis 
 
Construct 
Type Keyword or Description Notes 

ports input, inout, output   

parameters parameter   

module 
definition module   

signals and 
variables wire, reg, tri Vectors are allowed 

instantiation module instances, 
primitive gate instances 

E.g., mymux m1(out, i0, i1, s); E.g., nand 
(out, a, b); 

functions and 
tasks function, task Timing constructs ignored 

procedural always, if, then, else, case, 
casex, casez initial is not supported 
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procedural 
blocks 

begin, end, named blocks, 
disable Disabling of named blocks allowed 

data flow assign Delay information is ignored 

loops for, while, forever, while and forever loops must contain 
@(posedge clk) or @(negedge clk) 

 
Remember that we are providing a cycle-by-cycle RTL description of the circuit. Hence, 
there are restrictions on the way these constructs are used for the logic synthesis tool. For 
example, the while and forever loops must be broken by a @ (posedge clock) or @ 
(negedge clock) statement to enforce cycle-by-cycle behavior and to prevent 
combinational feedback. Another restriction is that logic synthesis ignores all timing 
delays specified by #<delay> construct. Therefore, pre- and post-synthesis Verilog 
simulation results may not match. The designer must use a description style that 
eliminates these mismatches. Also, the initial construct is not supported by logic 
synthesis tools. Instead, the designer must use a reset mechanism to initialize the signals 
in the circuit. 
  
 
It is recommended that all signal widths and variable widths be explicitly specified. 
Defining unsized variables can result in large, gate-level netlists because synthesis tools 
can infer unnecessary logic based on the variable definition. 
  
14.3.2 Verilog Operators 
  
 
Almost all operators in Verilog are allowed for logic synthesis. Table 14-2 is a list of the 
operators allowed. Only operators such as === and !== that are related to x and z are not 
allowed, because equality with x and z does not have much meaning in logic synthesis. 
While writing expressions, it is recommended that you use parentheses to group logic the 
way you want it to appear. If you rely on operator precedence, logic synthesis tools might 
produce an undesirable logic structure. 
  
 
Table 14-2. Verilog HDL Operators for Logic Synthesis 
Operator Type Operator Symbol Operation Performed

 
Arithmetic 

* 
  
/ 
  
+ 
  
- 
  
% 

multiply 
  
divide 
  
add 
  
subtract 
  
modulus 
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 + 
  
- 

 unary plus 
  
unary minus 

 
Logical 

! 
  
&& 
  
|| 

logical negation 
  
logical and 
  
logical or 

 
Relational 

> 
  
< 
  
>= 
  
<= 

greater than 
  
less than 
  
greater than or equal 
  
less than or equal 

 
Equality 

== 
  
!= 

equality 
  
inequality 

 
Bit-wise 

~ 
  
& 
  
| 
  
^ 
  
^~ or ~^ 

bitwise negation 
  
bitwise and 
  
bitwise or 
  
bitwise ex-or 
  
bitwise ex-nor 

 
Reduction 

& 
  
~& 
  
| 
 
~| 
  
^ 
  
^~ or ~^ 

reduction and 
  
reduction nand 
  
reduction or 
  
reduction nor 
  
reduction ex-or 
  
reduction ex-nor 

 
Shift 

>> 
  
<< 
  
>>> 

right shift 
  
left shift 
  
arithmetic right shift 
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 <<<  arithmetic left shift 

Concatenation { } concatenation 

Conditional ?: conditional 
 
14.3.3 Interpretation of a Few Verilog Constructs 
  
 
Having described the basic Verilog constructs, let us try to understand how logic 
synthesis tools frequently interpret these constructs and translate them to logic gates. 
  
The assign statement 
  
 
The assign construct is the most fundamental construct used to describe combinational 
logic at an RTL level. Given below is a logic expression that uses the assign statement. 
  
assign out = (a & b) | c; 
  
 
This will frequently translate to the following gate-level representation: 
  

 
 
If a, b, c, and out are 2-bit vectors [1:0], then the above assign statement will frequently 
translate to two identical circuits for each bit. 
  

 
 
If arithmetic operators are used, each arithmetic operator is implemented in terms of 
arithmetic hardware blocks available to the logic synthesis tool. A 1-bit full adder is 
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implemented below. 
  
assign {c_out, sum} = a + b + c_in; 
  
 
Assuming that the 1-bit full adder is available internally in the logic synthesis tool, the 
above assign statement is often interpreted by logic synthesis tools as follows: 
  

 
 
If a multiple-bit adder is synthesized, the synthesis tool will perform optimization and the 
designer might get a result that looks different from the above figure. 
  
 
If a conditional operator ? is used, a multiplexer circuit is inferred. 
  
assign out = (s) ? i1 : i0; 
  
 
It frequently translates to the gate-level representation shown in Figure 14-3. 
  

 
Figure 14-3. Multiplexer Description 
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The if-else statement 
  
Single if-else statements translate to multiplexers where the control signal is the signal or 
variable in the if clause. 
  
if(s) 
    out = i1; 
else 
   out = i0; 
  
 
The above statement will frequently translate to the gate-level description shown in 
Figure 14-3. In general, multiple if-else-if statements do not synthesize to large 
multiplexers. 
  
The case statement 
  
 
The case statement also can used to infer multiplexers. The above multiplexer would 
have been inferred from the following description that uses case statements: 
  
case (s) 
   1'b0 : out = i0; 
   1'b1 : out = i1; 
endcase 
  
 
Large case statements may be used to infer large multiplexers. 
  
for loops 
  
 
The for loops can be used to build cascaded combinational logic. For example, the 
following for loop builds an 8-bit full adder: 
  
c = c_in; 
for(i=0; i <=7; i = i + 1) 
    {c, sum[i]} = a[i] + b[i] + c; // builds an 8-bit ripple adder 
c_out = c; 
  
 
The always statement 
  
The always statement can be used to infer sequential and combinational logic. For 
sequential logic, the always statement must be controlled by the change in the value of a 
clock signal clk. 
 
 always @(posedge clk) 
            q <= d; 
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This is inferred as a positive edge-triggered D-flipflop with d as input, q as output, and 
clk as the clocking signal. 
  

 
 
Similarly, the following Verilog description creates a level-sensitive latch: 
  
always @(clk or d) 
       if (clk) 
            q <= d; 
  
 
For combinational logic, the always statement must be triggered by a signal other than 
the clk, reset, or preset. For example, the following block will be interpreted as a 1-bit 
full adder: 
  
always @(a or b or c_in) 
            {c_out, sum} = a + b + c_in; 
  
The function statement 
  
 
Functions synthesize to combinational blocks with one output variable. The output might 
be scalar or vector. A 4-bit full adder is implemented as a function in the Verilog 
description below. The most significant bit of the function is used for the carry bit. 
  
function [4:0] fulladd; 
input [3:0] a, b; 
input c_in; 
begin 
    fulladd = a + b + c_in; //bit 4 of fulladd for carry, bits[3:0] for 
sum. 
end 
endfunction 
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14.4 Synthesis Design Flow 
  
 
Having understood how basic Verilog constructs are interpreted by the logic synthesis 
tool, let us now discuss the synthesis design flow from an RTL description to an 
optimized gate-level description. 
  
14.4.1 RTL to Gates 
  
 
To fully utilize the benefits of logic synthesis, the designer must first understand the flow 
from the high-level RTL description to a gate-level netlist. Figure 14-4 explains that 
flow. 
  

 
Figure 14-4. Logic Synthesis Flow from RTL to Gates 

  

 
 
Let us discuss each component of the flow in detail. 
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RTL description 
  
 
The designer describes the design at a high level by using RTL constructs. The designer 
spends time in functional verification to ensure that the RTL description functions 
correctly. After the functionality is verified, the RTL description is input to the logic 
synthesis tool. 
  
Translation 
  
 
The RTL description is converted by the logic synthesis tool to an unoptimized, 
intermediate, internal representation. This process is called translation. Translation is 
relatively simple and uses techniques similar to those discussed in Section 14.3.3, 
Interpretation of a Few Verilog Constructs. The translator understands the basic 
primitives and operators in the Verilog RTL description. Design constraints such as area, 
timing, and power are not considered in the translation process. At this point, the logic 
synthesis tool does a simple allocation of internal resources. 
  
Unoptimized intermediate representation 
  
 
The translation process yields an unoptimized intermediate representation of the design. 
The design is represented internally by the logic synthesis tool in terms of internal data 
structures. The unoptimized intermediate representation is incomprehensible to the user. 
  
Logic optimization 
  
 
The logic is now optimized to remove redundant logic. Various technology independent 
boolean logic optimization techniques are used. This process is called logic optimization. 
It is a very important step in logic synthesis, and it yields an optimized internal 
representation of the design. 
  
Technology mapping and optimization 
  
 
Until this step, the design description is independent of a specific target technology. In 
this step, the synthesis tool takes the internal representation and implements the 
representation in gates, using the cells provided in the technology library. In other words, 
the design is mapped to the desired target technology. 
  
 
Suppose you want to get your IC chip fabricated at ABC Inc. ABC Inc. has 0.65 micron 
CMOS technology, which it calls abc_100 technology. Then, abc_100 becomes the target 
technology. You must therefore implement your internal design representation in gates, 
using the cells provided in abc_100 technology library. This is called technology 
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mapping. Also, the implementation should satisfy such design constraints as timing, area, 
and power. Some local optimizations are done to achieve the best results for the target 
technology. This is called technology optimization or technology-dependent 
optimization. 
  
Technology library 
  
 
The technology library contains library cells provided by ABC Inc. The term standard 
cell library used earlier in the chapter and the term technology library are identical and 
are used interchangeably. 
  
 
To build a technology library, ABC Inc. decides the range of functionality to provide in 
its library cells. As discussed earlier, library cells can be basic logic gates or macro cells 
such as adders, ALUs, multiplexers, and special flip-flops. The library cells are the basic 
building blocks that ABC Inc. will use for IC fabrication. Physical layout of library cells 
is done first. Then, the area of each cell is computed from the cell layout. Next, modeling 
techniques are used to estimate the timing and power characteristics of each library cell. 
This process is called cell characterization. 
  
 
Finally, each cell is described in a format that is understood by the synthesis tool. The 
cell description contains information about the following: 
  

• Functionality of the cell 
 

• Area of the cell layout 
 

• Timing information about the cell 
 

• Power information about the cell 
  
 
A collection of these cells is called the technology library. The synthesis tool uses these 
cells to implement the design. The quality of results from synthesis tools will typically be 
dominated by the cells available in the technology library. If the choice of cells in the 
technology library is limited, the synthesis tool cannot do much in terms of optimization 
for timing, area, and power. 
  
Design constraints 
  
Design constraints typically include the following: 
  

• Timing? The circuit must meet certain timing requirements. An internal static 
timing analyzer checks timing. 
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• Area? The area of the final layout must not exceed a limit. 
 

• Power? The power dissipation in the circuit must not exceed a threshold. 
  
In general, there is an inverse relationship between area and timing constraints. For a 
given technology library, to optimize timing (faster circuits), the design has to be 
parallelized, which typically means that larger circuits have to be built. To build smaller 
circuits, designers must generally compromise on circuit speed. The inverse relationship 
is shown in Figure 14-5. 
  

 
Figure 14-5. Area vs. Timing Trade-off 

  

 
 
On top of design constraints, operating environment factors, such as input and output 
delays, drive strengths, and loads, will affect the optimization for the target technology. 
Operating environment factors must be input to the logic synthesis tool to ensure that 
circuits are optimized for the required operating environment. 
  
Optimized gate-level description 
  
 
After the technology mapping is complete, an optimized gate-level netlist described in 
terms of target technology components is produced. If this netlist meets the required 
constraints, it is handed to ABC Inc. for final layout. Otherwise, the designer modifies the 
RTL or reconstrains the design to achieve the desired results. This process is iterated until 
the netlist meets the required constraints. ABC Inc. will do the layout, do timing checks 
to ensure that the circuit meets required timing after layout, and then fabricate the IC chip 
for you. 
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There are three points to note about the synthesis flow. 
  

1. For very high speed circuits like microprocessors, vendor technology libraries 
may yield nonoptimal results. Instead, design groups obtain information about the 
fabrication process used by the vendor, for example, 0.65 micron CMOS process, 
and build their own technology library components. Cell characterization is done 
by the designers. Discussion about building technology libraries and cell 
characterization is beyond the scope of this book. 

 
2. Translation, logic optimization, and technology mapping are done internally in the 

logic synthesis tool and are not visible to the designer. The technology library is 
given to the designer. Once the technology is chosen, the designer can control 
only the input RTL description and design constraint specification. Thus, writing 
efficient RTL descriptions, specifying design constraints accurately, evaluating 
design trade-offs, and having a good technology library are very important to 
produce optimal digital circuits when using logic synthesis. 

 
3. For submicron designs, interconnect delays are becoming a dominating factor in 

the overall delay. Therefore, as geometries shrink, in order to accurately model 
interconnect delays, synthesis tools will need to have a tighter link to layout, right 
at the RTL level. Timing analyzers built into synthesis tools will have to account 
for interconnect delays in the total delay calculation. 

  
14.4.2 An Example of RTL-to-Gates 
  
 
Let us discuss synthesis of a 4-bit magnitude comparator to understand each step in the 
synthesis flow. Steps of the synthesis flow such as translation, logic optimization, and 
technology mapping are not visible to us as designers. Therefore, we will concentrate on 
the components that are visible to the designer, such as the RTL description, technology 
library, design constraints, and the final, optimized, gate-level description. 
  
Design specification 
  
 
A magnitude comparator checks if one number is greater than, equal to, or less than 
another number. Design a 4-bit magnitude comparator IC chip that has the following 
specifications: 
  

• The name of the design is magnitude_comparator 
 

• Inputs A and B are 4-bit inputs. No x or z values will appear on A and B inputs 
 

• Output A_gt_B is true if A is greater than B 
 

• Output A_lt_B is true if A is less than B 
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• Output A_eq_B is true if A is equal to B 
 

• The magnitude comparator circuit must be as fast as possible. Area can be 
compromised for speed. 

  
RTL description 
  
 
The RTL description that describes the magnitude comparator is shown in Example 14-1. 
This is a technology-independent description. The designer does not have to worry about 
the target technology at this point. 
  
Example 14-1 RTL for Magnitude Comparator 
  
//Module magnitude comparator 
module magnitude_comparator(A_gt_B, A_lt_B, A_eq_B, A, B); 
 
//Comparison output 
output A_gt_B, A_lt_B, A_eq_B; 
 
//4-bits numbers input 
input [3:0] A, B; 
 
assign A_gt_B = (A > B); //A greater than B 
assign A_lt_B = (A < B); //A less than B 
assign A_eq_B = (A == B); //A equal to B 
 
endmodule 
  
 
Notice that the RTL description is very concise. 
  
Technology library 
  
 
We decide to use the 0.65 micron CMOS process called abc_100 used by ABC Inc. to 
make our IC chip. ABC Inc. supplies a technology library for synthesis. The library 
contains the following library cells. The library cells are defined in a format understood 
by the synthesis tool. 
  
//Library cells for abc_100 technology 
 
VNAND//2-input nand gate 
VAND//2-input and gate 
VNOR//2-input nor gate 
VOR//2-input or gate 
VNOT//not gate 
VBUF//buffer 
NDFF//Negative edge triggered D flip-flop 
PDFF//Positive edge triggered D flip-flop 
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Functionality, timing, area, and power dissipation information of each library cell are 
specified in the technology library. 
  
Design constraints 
  
 
According to the specification, the design should be as fast as possible for the target 
technology, abc_100. There are no area constraints. Thus, there is only one design 
constraint. 
  

• Optimize the final circuit for fastest timing 
  
Logic synthesis 
  
 
The RTL description of the magnitude comparator is read by the logic synthesis tool. The 
design constraints and technology library for abc_100 are provided to the logic synthesis 
tool. The logic synthesis tool performs the necessary optimizations and produces a gate-
level description optimized for abc_100 technology. 
  
Final, Optimized, Gate-Level Description 
  
 
The logic synthesis tool produces a final, gate-level description. The schematic for the 
gate-level circuit is shown in Figure 14-6. 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
 

319

Figure 14-6. Gate-Level Schematic for the Magnitude Comparator 
  

 
 
The gate-level Verilog description produced by the logic synthesis tool for the circuit is 
shown below. Ports are connected by name. 
  
Example 14-2 Gate-Level Description for the Magnitude Comparator 
  
module magnitude_comparator ( A_gt_B, A_lt_B, A_eq_B, A, B ); 
input  [3:0] A; 
input  [3:0] B; 
output A_gt_B, A_lt_B, A_eq_B; 
    wire n60, n61, n62, n50, n63, n51, n64, n52, n65, n40, n53, 
         n41, n54, n42, n55, n43, n56, n44, n57, n45, n58, n46, 
         n59, n47, n48, n49, n38, n39; 
    VAND U7 ( .in0(n48), .in1(n49), .out(n38) ); 
    VAND U8 ( .in0(n51), .in1(n52), .out(n50) ); 
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    VAND U9 ( .in0(n54), .in1(n55), .out(n53) ); 
    VNOT U30 ( .in(A[2]), .out(n62) ); 
    VNOT U31 ( .in(A[1]), .out(n59) ); 
    VNOT U32 ( .in(A[0]), .out(n60) ); 
    VNAND U20 ( .in0(B[2]), .in1(n62), .out(n45) ); 
    VNAND U21 ( .in0(n61), .in1(n45), .out(n63) ); 
    VNAND U22 ( .in0(n63), .in1(n42), .out(n41) ); 
    VAND U10 ( .in0(n55), .in1(n52), .out(n47) ); 
    VOR U23 ( .in0(n60), .in1(B[0]), .out(n57) ); 
    VAND U11 ( .in0(n56), .in1(n57), .out(n49) ); 
    VNAND U24 ( .in0(n57), .in1(n52), .out(n54) ); 
    VAND U12 ( .in0(n40), .in1(n42), .out(n48) ); 
    VNAND U25 ( .in0(n53), .in1(n44), .out(n64) ); 
    VOR U13 ( .in0(n58), .in1(B[3]), .out(n42) ); 
    VOR U26 ( .in0(n62), .in1(B[2]), .out(n46) ); 
    VNAND U14 ( .in0(B[3]), .in1(n58), .out(n40) ); 
    VNAND U27 ( .in0(n64), .in1(n46), .out(n65) ); 
    VNAND U15 ( .in0(B[1]), .in1(n59), .out(n55) ); 
    VNAND U28 ( .in0(n65), .in1(n40), .out(n43) ); 
    VOR U16 ( .in0(n59), .in1(B[1]), .out(n52) ); 
    VNOT U29 ( .in(A[3]), .out(n58) ); 
    VNAND U17 ( .in0(B[0]), .in1(n60), .out(n56) ); 
    VNAND U18 ( .in0(n56), .in1(n55), .out(n51) ); 
    VNAND U19 ( .in0(n50), .in1(n44), .out(n61) ); 
    VAND U2 ( .in0(n38), .in1(n39), .out(A_eq_B) ); 
    VNAND U3 ( .in0(n40), .in1(n41), .out(A_lt_B) ); 
    VNAND U4 ( .in0(n42), .in1(n43), .out(A_gt_B) ); 
    VAND U5 ( .in0(n45), .in1(n46), .out(n44) ); 
    VAND U6 ( .in0(n47), .in1(n44), .out(n39) ); 
endmodule 
  
 
If the designer decides to use another technology, say, xyz_100 from XYZ Inc., because 
it is a better technology, the RTL description and design constraints do not change. Only 
the technology library changes. Thus, to map to a new technology, a logic synthesis tool 
simply reads the unchanged RTL description, unchanged design constraints, and new 
technology library and creates a new, optimized, gate-level netlist. 
  
 
Note that if automated logic synthesis were not available, choosing a new technology 
would require the designer to redesign and reoptimize by hand the gate-level netlist in 
Example 14-2. 
  
IC Fabrication 
  
 
The gate-level netlist is verified for functionality and timing and then submitted to ABC 
Inc. ABC Inc. does the chip layout, checks that the post-layout circuit meets timing 
requirements, and then fabricates the IC chip, using abc_100 technology. 
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14.5 Verification of Gate-Level Netlist 
  
 
The optimized gate-level netlist produced by the logic synthesis tool must be verified for 
functionality. Also, the synthesis tool may not always be able to meet both timing and 
area requirements if they are too stringent. Thus, a separate timing verification can be 
done on the gate-level netlist. 
  
14.5.1 Functional Verification 
  
 
Identical stimulus is run with the original RTL and synthesized gate-level descriptions of 
the design. The output is compared to find any mismatches. For the magnitude 
comparator, a sample stimulus file is shown below. 
  
Example 14-3 Stimulus for Magnitude Comparator 
  
module stimulus; 
 
reg [3:0] A, B; 
wire A_GT_B, A_LT_B, A_EQ_B; 
 
//Instantiate the magnitude comparator 
magnitude_comparator MC(A_GT_B, A_LT_B, A_EQ_B, A, B); 
 
initial 
  $monitor($time," A = %b, B = %b, A_GT_B = %b, A_LT_B = %b, A_EQ_B = 
%b", 
        A, B, A_GT_B, A_LT_B, A_EQ_B); 
 
//stimulate the magnitude comparator. 
initial 
begin 
  A = 4'b1010; B = 4'b1001; 
  # 10 A = 4'b1110; B = 4'b1111; 
  # 10 A = 4'b0000; B = 4'b0000; 
  # 10 A = 4'b1000; B = 4'b1100; 
  # 10 A = 4'b0110; B = 4'b1110; 
  # 10 A = 4'b1110; B = 4'b1110; 
end 
 
endmodule 
  
 
The same stimulus is applied to both the RTL description in Example 14-1 and the 
synthesized gate-level description in Example 14-2, and the simulation output is 
compared for mismatches. However, there is an additional consideration. The gate-level 
description is in terms of library cells VAND, VNAND, etc. Verilog simulators do not 
understand the meaning of these cells. Thus, to simulate the gate-level description, a 
simulation library, abc_100.v, must be provided by ABC Inc. The simulation library must 
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describe cells VAND, VNAND, etc., in terms of Verilog HDL primitives and, nand, etc. 
For example, the VAND cell will be defined in the simulation library as shown in 
Example 14-4. 
  
Example 14-4 Simulation Library 
  
//Simulation Library abc_100.v. Extremely simple. No timing checks. 
 
module VAND (out, in0, in1); 
input in0; 
input in1; 
output out; 
 
//timing information, rise/fall and min:typ:max 
specify 
(in0 => out) = (0.260604:0.513000:0.955206, 
0.255524:0.503000:0.936586); 
(in1 => out) = (0.260604:0.513000:0.955206, 
0.255524:0.503000:0.936586); 
endspecify 
 
//instantiate a Verilog HDL primitive 
and (out, in0, in1); 
endmodule 
... 
//All library cells will have corresponding module definitions 
//in terms of Verilog primitives. 
... 
  
 
Stimulus is applied to the RTL description and the gate-level description. A typical 
invocation with a Verilog simulator is shown below. 
  
//Apply stimulus to RTL description 
> verilog stimulus.v mag_compare.v 
 
//Apply stimulus to gate-level description. 
//Include simulation library "abc_100.v" using the -v option 
> verilog stimulus.v mag_compare.gv -v abc_100.v 
  
 
The simulation output must be identical for the two simulations. In our case, the output is 
identical. For the example of the magnitude comparator, the output is shown in Example 
14-5. 
  
Example 14-5 Output from Simulation of Magnitude Comparator 
  
 0 A = 1010, B = 1001, A_GT_B = 1, A_LT_B = 0, A_EQ_B = 0 
10 A = 1110, B = 1111, A_GT_B = 0, A_LT_B = 1, A_EQ_B = 0 
20 A = 0000, B = 0000, A_GT_B = 0, A_LT_B = 0, A_EQ_B = 1 
30 A = 1000, B = 1100, A_GT_B = 0, A_LT_B = 1, A_EQ_B = 0 
40 A = 0110, B = 1110, A_GT_B = 0, A_LT_B = 1, A_EQ_B = 0 
50 A = 1110, B = 1110, A_GT_B = 0, A_LT_B = 0, A_EQ_B = 1 
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If the output is not identical, the designer needs to check for any potential bugs and rerun 
the whole flow until all bugs are eliminated. 
  
 
Comparing simulation output of an RTL and a gate-level netlist is only a part of the 
functional verification process. Various techniques are used to ensure that the gate-level 
netlist produced by logic synthesis is functionally correct. One technique is to write a 
high-level architectural description in C++. The output obtained by executing the high-
level architectural description is compared against the simulation output of the RTL or 
the gate-level description. Another technique called equivalence checking is also 
frequently used. It is discussed in greater detail in Section 15.3.2, Equivalence Checking, 
in this book. 
  
Timing verification 
  
 
The gate-level netlist is typically checked for timing by use of timing simulation or by a 
static timing verifier. If any timing constraints are violated, the designer must either 
redesign part of the RTL or make trade-offs in design constraints for logic synthesis. The 
entire flow is iterated until timing requirements are met. Details of static timing verifiers 
are beyond the scope of this book. Timing simulation is discussed in Chapter 10, Timing 
and Delays. 
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14.6 Modeling Tips for Logic Synthesis 
  
 
The Verilog RTL design style used by the designer affects the final gate-level netlist 
produced by logic synthesis. Logic synthesis can produce efficient or inefficient gate-
level netlists, based on the style of RTL descriptions. Hence, the designer must be aware 
of techniques used to write efficient circuit descriptions. In this section, we provide tips 
about modeling trade-offs, for the designer to write efficient, synthesizable Verilog 
descriptions. 
  
14.6.1 Verilog Coding Style[2] 
 
 
[2] Verilog coding style suggestions may vary slightly based on your logic synthesis tool. 
However, the suggestions included in this chapter are applicable to most cases. The IEEE 
Standard Verilog Hardware Description Language document also adds a new language 
construct called attribute. Attributes such as full_case, parallel_case, state_variable, and 
optimize can be included in the Verilog HDL specification of the design. These attributes 
are used by synthesis tools to guide the synthesis process. 
  
 
The style of the Verilog description greatly affects the final design. For logic synthesis, it 
is important to consider actual hardware implementation issues. The RTL specification 
should be as close to the desired structure as possible without sacrificing the benefits of a 
high level of abstraction. There is a trade-off between level of design abstraction and 
control over the structure of the logic synthesis output. Designing at a very high level of 
abstraction can cause logic with undesirable structure to be generated by the synthesis 
tool. Designing at a very low level (e.g., hand instantiation of each cell) causes the 
designer to lose the benefits of high-level design and technology independence. Also, a 
"good" style will vary among logic synthesis tools. However, many principles are 
common across logic synthesis tools. Listed below are some guidelines that the designer 
should consider while designing at the RTL level. 
  
Use meaningful names for signals and variables 
  
 
Names of signals and variables should be meaningful so that the code becomes self-
commented and readable. 
  
Avoid mixing positive and negative edge-triggered flipflops 
  
 
Mixing positive and negative edge-triggered flipflops may introduce inverters and buffers 
into the clock tree. This is often undesirable because clock skews are introduced in the 
circuit. 
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Use basic building blocks vs. use continuous assign statements 
  
 
Trade-offs exist between using basic building blocks versus using continuous assign 
statements in the RTL description. Continuous assign statements are a very concise way 
of representing the functionality and they generally do a good job of generating random 
logic. However, the final logic structure is not necessarily symmetrical. Instantiation of 
basic building blocks creates symmetric designs, and the logic synthesis tool is able to 
optimize smaller modules more effectively. However, instantiation of building blocks is 
not a concise way to describe the design; it inhibits retargeting to alternate technologies, 
and generally there is a degradation in simulator performance. 
  
 
Assume that a 2-to-1, 8-bit multiplexer is defined as a module mux2_1L8 in the design. If 
a 32-bit multiplexer is needed, it can be built by instantiating 8-bit multiplexers rather 
than by using the assign statement. 
  
//Style 1: 32-bit mux using assign statement 
module mux2_1L32(out, a, b, select); 
output [31:0] out; 
input [31:0] a, b; 
wire select; 
 
assign out = select ? a : b; 
endmodule 
 
//Style 2: 32-bit multiplexer using basic building blocks 
//If 8-bit muxes are defined earlier in the design, instantiating 
//these muxes is more efficient for 
//synthesis. Fewer gates, faster design. 
//Less efficient for simulation 
module mux2_1L32(out, a, b, select); 
output [31:0] out; 
input [31:0] a, b; 
wire select; 
 
mux2_1L8 m0(out[7:0], a[7:0], b[7:0], select); //bits 7 through 0 
mux2_1L8 m1(out[15:7], a[15:7], b[ 15:7], select); //bits 15 through 7 
mux2_1L8 m2(out[23:16], a[23:16], b[23:16], select); //bits 23 through 
16 
mux2_1L8 m3(out[31:24], a[31:24], b[31:24], select); //bits 31 through 
24 
 
endmodule 
  
Instantiate multiplexers vs. Use if-else or case statements 
  
 
We discussed in Section 14.3.3, Interpretation of a Few Verilog Constructs, that if-else 
and case statements are frequently synthesized to multiplexers in hardware. If a 
structured implementation is needed, it is better to implement a block directly by using 
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multiplexers, because if-else or case statements can cause undesired random logic to be 
generated by the synthesis tool. Instantiating a multiplexer gives better control and faster 
synthesis, but it has the disadvantage of technology dependence and a longer RTL 
description. On the other hand, if-else and case statements can represent multiplexers 
very concisely and are used to create technology-independent RTL descriptions. 
  
Use parentheses to optimize logic structure 
  
 
The designer can control the final structure of logic by using parentheses to group logic. 
Using parentheses also improves readability of the Verilog description. 
  
//translates to 3 adders in series 
out = a + b + c + d; 
 
//translates to 2 adders in parallel with one final adder to sum 
results 
out = (a + b) + (c + d) ; 
  
Use arithmetic operators *, /, and % vs. Design building blocks 
  
 
Multiply, divide, and modulo operators are very expensive to implement in terms of logic 
and area. However, these arithmetic operators can be used to implement the desired 
functionality concisely and in a technology-independent manner. On the other hand, 
designing custom blocks to do multiplication, division, or modulo operation can take a 
longer time, and the RTL description becomes more technology-dependent. 
  
Be careful with multiple assignments to the same variable 
  
 
Multiple assignments to the same variable can cause undesired logic to be generated. The 
previous assignment might be ignored, and only the last assignment would be used. 
  
//two assignments to the same variable 
always @(posedge clk) 
       if(load1) q <= a1; 
 
always @(posedge clk) 
       if(load2) q <= a2; 
  
 
The synthesis tool infers two flipflops with the outputs anded together to produce the q 
output. The designer needs to be careful about such situations. 
  
Define if-else or case statements explicitly 
  
 
Branches for all possible conditions must be specified in the if-else or case statements. 
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Otherwise, level-sensitive latches may be inferred instead of multiplexers. Refer to 
Section 14.3.3, Interpretation of a Few Verilog Constructs, for the discussion on latch 
inference. 
  
//latch is inferred; incomplete specification. 
//whenever control = 1, out = a which implies a latch behavior. 
//no branch for control = 0 
always @(control or a) 
    if (control) 
       out <= a; 
 
//multiplexer is inferred. complete specification for all values of 
//control 
always @(control or a or b) 
    if (control) 
        out = a; 
    else 
       out = b; 
  
 
Similarly, for case statements, all possible branches, including the default statement, must 
be specified. 
  
14.6.2 Design Partitioning 
  
 
Design partitioning is another important factor for efficient logic synthesis. The way the 
designer partitions the design can greatly affect the output of the logic synthesis tool. 
Various partitioning techniques can be used. 
  
Horizontal partitioning 
  
 
Use bit slices to give the logic synthesis tool a smaller block to optimize. This is called 
horizontal partitioning. It reduces complexity of the problem and produces more optimal 
results for each block. For example, instead of directly designing a 16-bit ALU, design a 
4-bit ALU and build the 16-bit ALU with four 4-bit ALUs. Thus, the logic synthesis tool 
has to optimize only the 4-bit ALU, which is a smaller problem than optimizing the 16-
bit ALU. The partitioning of the ALU is shown in Figure 14-7. 
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Figure 14-7. Horizontal Partitioning of 16-bit ALU 
  

 
 
The downside of horizontal partitioning is that global minima can often be different local 
minima. Thus, by use of bit slices, each block is optimized individually, but there may be 
some global redundancies that the synthesis tool may not be able to eliminate. 
  
Vertical Partitioning 
  
 
Vertical partitioning implies that the functionality of a block is divided into smaller 
submodules. This is different from horizontal partitioning. In horizontal partitioning, all 
blocks do the same function. In vertical partitioning, each block does a different function. 
Assume that the 4-bit ALU described earlier is a four-function ALU with functions add, 
subtract, shift right, and shift left. Each block is distinct in function. This is vertical 
partitioning. Vertical partitioning of the 4-bit ALU is shown in Figure 14-8. 
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Figure 14-8. Vertical Partitioning of 4-bit ALU 
  

 
 
Figure 14-8 shows vertical partitioning of the 4-bit ALU. For logic synthesis, it is 
important to create a hierarchy by partitioning a large block into separate functional sub-
blocks. A design is best synthesized if levels of hierarchy are created and smaller blocks 
are synthesized individually. Creating modules that contain a lot of functionality can 
cause logic synthesis to produce suboptimal designs. Instead, divide the functionality into 
smaller modules and instantiate those modules. 
  
Parallelizing design structure 
  
 
In this technique, we use more resources to produce faster designs. We convert sequential 
operations into parallel operations by using more logic. A good example is the carry 
lookahead full adder. 
  
 
Contrast the carry lookahead adder with a ripple carry adder. A ripple carry adder is serial 
in nature. A 4-bit ripple carry adder requires 9 gate delays to generate all sum and carry 
bits. On the other hand, assuming that up to 5-input and and or gates are available, a carry 
lookahead adder generates the sum and carry bits in 4 gate delays. Thus, we use more 
logic gates to build a carry lookahead unit, which is faster compared to an n-bit ripple 
carry adder. 
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Figure 14-9. Parallelizing the Operation of an Adder 
  

 
 
14.6.3 Design Constraint Specification 
  
 
Design constraints are as important as efficient HDL descriptions in producing optimal 
designs. Accurate specification of timing, area, power, and environmental parameters 
such as input drive strengths, output loads, input arrival times, etc., are crucial to produce 
a gate-level netlist that is optimal. A deviation from the correct constraints or omission of 
a constraint can lead to nonoptimal designs. Careful attention must be given to specifying 
design constraints. 
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14.7 Example of Sequential Circuit Synthesis 
  
 
In Section 14.4.2, An Example of RTL-to-Gates, we synthesized a combinational circuit. 
Let us now consider an example of sequential circuit synthesis. Specifically, we will 
design finite state machines. 
  
14.7.1 Design Specification 
  
 
A simple digital circuit is to be designed for the coin acceptor of an electronic newspaper 
vending machine. 
  

• Assume that the newspaper cost 15 cents. (Wow! Who gives that kind of a price 
any more? Well, let us assume that it is a special student edition!!) 

 
• The coin acceptor takes only nickels and dimes. 

 
• Exact change must be provided. The acceptor does not return extra money. 

 
• Valid combinations including order of coins are one nickel and one dime, three 

nickels, or one dime and one nickel. Two dimes are valid, but the acceptor does 
not return money. 

  
 
This digital circuit can be designed by using the finite state machine approach. 
  
14.7.2 Circuit Requirements 
  
 
We must set some requirements for the digital circuit. 
  

• When each coin is inserted, a 2-bit signal coin[1:0] is sent to the digital circuit. 
The signal is asserted at the next negative edge of a global clock signal and stays 
up for exactly 1 clock cycle. 

 
• The output of the digital circuit is a single bit. Each time the total amount inserted 

is 15 cents or more, an output signal newspaper goes high for exactly one clock 
cycle and the vending machine door is released. 

 
• A reset signal can be used to reset the finite state machine. We assume 

synchronous reset. 
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14.7.3 Finite State Machine (FSM) 
  
 
We can represent the functionality of the digital circuit with a finite state machine. 
  

• input: 2-bit, coin[1:0]?no coin x0= 2'b00, nickel x5 = 2'b01, dime x10 = 2'b10. 
 

• output: 1-bit, newspaper?release door when newspaper = 1'b1 
 

• states: 4 states?s0 = 0 cents; s5 = 5 cents; s10 = 10 cents; s15 = 15 cents 
  
 
The bubble diagram for the finite state machine is shown in Figure 14-10. Each arc in the 
FSM is labeled with a label <input>/<output> where input is 2-bit and output is 1-bit. For 
example, x5/0 means transition to the state pointed to by the arc, when input is x5 
(2'b01), and set the output to 0. 
  

 
Figure 14-10. Finite State Machine for Newspaper Vending Machine 

  

 
 
14.7.4 Verilog Description 
  
 
The Verilog RTL description for the finite state machine is shown in Example 14-6. 
  
Example 14-6 RTL Description for Newspaper Vending Machine FSM 
  
//Design the newspaper vending machine coin acceptor 
//using a FSM approach 
module vend( coin, clock, reset, newspaper); 
 
//Input output port declarations 
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input [1:0] coin; 
input clock; 
input reset; 
output newspaper; 
wire newspaper; 
 
//internal FSM state declarations 
wire [1:0] NEXT_STATE; 
reg [1:0] PRES_STATE; 
 
//state encodings 
parameter s0 = 2'b00; 
parameter s5 = 2'b01; 
parameter s10 = 2'b10; 
parameter s15 = 2'b11; 
 
//Combinational logic 
function [2:0] fsm; 
  input [1:0] fsm_coin; 
  input [1:0] fsm_PRES_STATE; 
 
  reg fsm_newspaper; 
  reg [1:0] fsm_NEXT_STATE; 
 
begin 
  case (fsm_PRES_STATE) 
  s0: //state = s0 
  begin 
    if (fsm_coin == 2'b10) 
    begin 
      fsm_newspaper = 1'b0; 
      fsm_NEXT_STATE = s10; 
    end 
    else if (fsm_coin == 2'b01) 
    begin 
      fsm_newspaper = 1'b0; 
      fsm_NEXT_STATE = s5; 
    end 
    else 
    begin 
      fsm_newspaper = 1'b0; 
      fsm_NEXT_STATE = s0; 
    end 
  end 
 
 s5: //state = s5 
  begin 
    if (fsm_coin == 2'b10) 
    begin 
      fsm_newspaper = 1'b0; 
      fsm_NEXT_STATE = s15; 
    end 
    else if (fsm_coin == 2'b01) 
    begin 
      fsm_newspaper = 1'b0; 
      fsm_NEXT_STATE = s10; 
    end 
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    else 
    begin 
      fsm_newspaper = 1'b0; 
      fsm_NEXT_STATE = s5; 
    end 
 
 s10: //state = s10 
  begin 
    if (fsm_coin == 2'b10) 
    begin 
      fsm_newspaper = 1'b0; 
      fsm_NEXT_STATE = s15; 
    end 
    else if (fsm_coin == 2'b01) 
    begin 
      fsm_newspaper = 1'b0; 
      fsm_NEXT_STATE = s15; 
    end 
    else 
    begin 
      fsm_newspaper = 1'b0; 
      fsm_NEXT_STATE = s10; 
    end 
  end 
  s15: //state = s15 
  begin 
    fsm_newspaper = 1'b1; 
    fsm_NEXT_STATE = s0; 
  end 
  endcase 
  fsm = {fsm_newspaper, fsm_NEXT_STATE}; 
end 
endfunction 
 
//Reevaluate combinational logic each time a coin 
//is put or the present state changes 
assign {newspaper, NEXT_STATE} = fsm(coin, PRES_STATE); 
 
//clock the state flip-flops. 
//use synchronous reset 
always @(posedge clock) 
begin 
  if (reset == 1'b1) 
    PRES_STATE <=  s0; 
  else 
    PRES_STATE <=  NEXT_STATE; 
end 
 
endmodule 
  
14.7.5 Technology Library 
  
We defined abc_100 technology in Section 14.4.1, RTL to Gates. We will use abc_100 as 
the target technology library. abc_100 contains the following library cells: 
  
//Library cells for abc_100 technology 
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VNAND//2-input nand gate 
VAND//2-input and gate 
VNOR//2-input nor gate 
VOR//2-input or gate 
VNOT//not gate 
VBUF//buffer 
NDFF//Negative edge triggered D flip-flop 
PDFF//Positive edge triggered D flip-flop 
  
14.7.6 Design Constraints 
  
Timing critical is the only design constraint we used in this design. Typically, design 
constraints are more elaborate. 
  
14.7.7 Logic Synthesis 
  
We synthesize the RTL description by using the specified design constraints and 
technology library and obtain the optimized gate-level netlist. 
  
14.7.8 Optimized Gate-Level Netlist 
  
We use logic synthesis to map the RTL description to the abc_100 technology. The 
optimized gate-level netlist produced is shown in Example 14-7. 
  
Example 14-7 Optimized Gate-Level Netlist for Newspaper Vending Machine FSM 
  
module vend ( coin, clock, reset, newspaper ); 
input  [1:0] coin; 
input  clock, reset; 
output newspaper; 
    wire \PRES_STATE[1] , n289, n300, n301, n302, \PRES_STATE243[1] , 
          n303, n304, \PRES_STATE[0] , n290, n291, n292, n293, n294, 
          n295, n296, n297, n298, n299, \PRES_STATE243[0] ; 
    PDFF \PRES_STATE_reg[1]  ( .clk(clock), .d(\PRES_STATE243[1] ), 
                    .clrbar( 1'b1), .prebar(1'b1), .q(\PRES_STATE[1] ) 
); 
    PDFF \PRES_STATE_reg[0]  ( .clk(clock), .d(\PRES_STATE243[0] ), 
                    .clrbar( 1'b1), .prebar(1'b1), .q(\PRES_STATE[0] ) 
); 
    VOR U119 ( .in0(n292), .in1(n295), .out(n302) ); 
    VAND U118 ( .in0(\PRES_STATE[0] ), .in1(\PRES_STATE[1] ), 
                  .out(newspaper)); 
    VNAND U117 ( .in0(n300), .in1(n301), .out(n291) ); 
    VNOR U116 ( .in0(n298), .in1(coin[0]), .out(n299) ); 
    VNOR U115 ( .in0(reset), .in1(newspaper), .out(n289) ); 
    VNOT U128 ( .in(\PRES_STATE[1] ), .out(n298) ); 
    VAND U114 ( .in0(n297), .in1(n298), .out(n296) ); 
    VNOT U127 ( .in(\PRES_STATE[0] ), .out(n295) ); 
    VAND U113 ( .in0(n295), .in1(n292), .out(n294) ); 
    VNOT U126 ( .in(coin[1]), .out(n293) ); 
    VNAND U112 ( .in0(coin[0]), .in1(n293), .out(n292) ); 
    VNAND U125 ( .in0(n294), .in1(n303), .out(n300) ); 
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    VNOR U111 ( .in0(n291), .in1(reset), .out(\PRES_STATE243[0] ) ); 
    VNAND U124 ( .in0(\PRES_STATE[0] ), .in1(n304), .out(n301) ); 
    VAND U110 ( .in0(n289), .in1(n290), .out(\PRES_STATE243[1] ) ); 
    VNAND U123 ( .in0(n292), .in1(n298), .out(n304) ); 
    VNAND U122 ( .in0(n299), .in1(coin[1]), .out(n303) ); 
    VNAND U121 ( .in0(n296), .in1(n302), .out(n290) ); 
    VOR U120 ( .in0(n293), .in1(coin[0]), .out(n297) ); 
endmodule 
  
The schematic diagram for the gate-level netlist is shown in Figure 14-11. 
  

Figure 14-11. Gate-Level Schematic for the Vending Machine 
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14.7.9 Verification 
  
 
Stimulus is applied to the original RTL description to test all possible combinations of 
coins. The same stimulus is applied to test the optimized gate-level netlist. Stimulus 
applied to both the RTL and gate-level netlist is shown in Example 14-8. 
  
Example 14-8 Stimulus for Newspaper Vending Machine FSM 
  
module stimulus; 
reg clock; 
reg [1:0] coin; 
reg reset; 
wire newspaper; 
 
//instantiate the vending state machine 
vend vendY (coin, clock, reset, newspaper); 
 
//Display the output 
initial 
begin 
  $display("\t\tTime  Reset Newspaper\n"); 
  $monitor("%d  %d  %d", $time, reset, newspaper); 
end 
 
//Apply stimulus to the vending machine 
initial 
begin 
  clock = 0; 
  coin = 0; 
  reset = 1; 
  #50 reset = 0; 
  @(negedge clock); //wait until negative edge of clock 
 
  //Put 3 nickels to get newspaper 
  #80 coin = 1; #40 coin = 0; 
  #80 coin = 1; #40 coin = 0; 
  #80 coin = 1; #40 coin = 0; 
 
 //Put one nickel and then one dime to get newspaper 
  #180 coin = 1; #40 coin = 0; 
  #80 coin = 2; #40 coin = 0; 
 
  //Put two dimes; machine does not return a nickel to get newspaper 
  #180 coin = 2; #40 coin = 0; 
  #80 coin = 2; #40 coin = 0; 
 
  //Put one dime and then one nickel to get newspaper 
  #180 coin = 2; #40 coin = 0; 
  #80 coin = 1; #40 coin = 0; 
 
  #80 $finish; 
end 
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//setup clock; cycle time = 40 units 
always 
begin 
  #20 clock = ~clock; 
end 
 
endmodule 
  
 
The output from the simulation of RTL and the gate-level netlist is compared. In our 
case, Example 14-9, the output is identical. Thus, the gate-level netlist is verified. 
  
Example 14-9 Output of Newspaper Vending Machine FSM 
  
  Time Reset Newspaper 
 
   0    1       x 
  20    1       0 
  50    0       0 
 420    0       1 
 460    0       0 
 780    0       1 
 820    0       0 
1100    0       1 
1140    0       0 
1460    0       1 
1500    0       0 
  
 
The gate-level netlist is sent to ABC Inc., which does the layout, checks that the layout 
meets the timing requirements, and then fabricates the IC chip. 
  
14.8 Summary 
  
 
In this chapter, we discussed the following aspects of logic synthesis with Verilog HDL: 
  

• Logic synthesis is the process of converting a high-level description of the design 
into an optimized, gate-level representation, using the cells in the technology 
library. 

 
• Computer-aided logic synthesis tools have greatly reduced the design cycle time 

and have improved productivity. They allow designers to write technology-
independent, high-level descriptions and produce technology-dependent, 
optimized, gate-level netlists. Both combinational and sequential RTL 
descriptions can be synthesized. 

 
• Logic synthesis tools accept high-level descriptions at the register transfer level 

(RTL). Thus, not all Verilog constructs are acceptable to a logic synthesis tool. 
We discussed the acceptable Verilog constructs and operators and their 
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interpretation in terms of digital circuit elements. 
 

• A logic synthesis tool accepts an RTL description, design constraints, and 
technology library and produces an optimized gate-level netlist. Translation, logic 
optimization, and technology mapping are the internal processes in a logic 
synthesis tool and are normally invisible to the user. 

 
• Functional verification of the optimized gate-level netlist is done by applying the 

same stimulus to the RTL description and the gate-level netlist and comparing the 
output. Timing is verified with timing simulation or static timing verification. 

 
• Proper Verilog coding techniques must be used to write efficient RTL 

descriptions, and various design trade-offs must be evaluated. Guidelines for 
writing efficient RTL descriptions were discussed. 

 
• Design partitioning is an important technique used to break the design into 

smaller blocks. Smaller blocks reduce the complexity of optimization for the logic 
synthesis tool. 

 
• Accurate specification of design constraints is an important part of logic 

synthesis. 
  
 
High-level synthesis tools allow the designer to write designs at an algorithmic level. 
However, high-level synthesis is still an emerging design paradigm, and RTL remains the 
popular high-level description method for logic synthesis tools. 
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14.9 Exercises 
  
 

1: A 4-bit full adder with carry lookahead was defined in Example 6-5 on page 
109, using an RTL description. Synthesize the full adder, using a technology 
library available to you. Optimize for fastest timing. Apply identical stimulus to 
the RTL and the gate-level netlist and compare the output. 

2: A 1-bit full subtractor has three inputs x, y, and z (previous borrow) and two 
outputs D(difference) and B(borrow). The logic equations for D and B are as 
follows: 
  
D = x'y'z + x'yz' + xy'z' + xyz 
B = x'y + x'z +yz 
  
 
Write the Verilog RTL description for the full subtractor. Synthesize the full 
subtractor, using any technology library available to you. Optimize for fastest 
timing. Apply identical stimulus to the RTL and the gate-level netlist and 
compare the output. 

3: Design a 3-to-8 decoder, using a Verilog RTL description. A 3-bit input a[2:0] 
is provided to the decoder. The output of the decoder is out[7:0]. The output bit 
indexed by a[2:0] gets the value 1, the other bits are 0. Synthesize the decoder, 
using any technology library available to you. Optimize for smallest area. 
Apply identical stimulus to the RTL and the gate-level netlist and compare the 
outputs. 

4: Write the Verilog RTL description for a 4-bit binary counter with synchronous 
reset that is active high. (Hint: Use always loop with the @(posedge clock) 
statement.) Synthesize the counter, using any technology library available to 
you. Optimize for smallest area. Apply identical stimulus to the RTL and the 
gate-level netlist and compare the outputs. 

5: Using a synchronous finite state machine approach, design a circuit that takes a 
single bit stream as an input at the pin in. An output pin match is asserted high 
each time a pattern 10101 is detected. A reset pin initializes the circuit 
synchronously. Input pin clk is used to clock the circuit. Synthesize the circuit, 
using any technology library available to you. Optimize for fastest timing. 
Apply identical stimulus to the RTL and the gate-level netlist and compare the 
outputs. 
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Chapter 15. Advanced Verification 
Techniques 
  
 
Verilog HDL was traditionally used both as a simulation modeling language and as a 
hardware description language. Verilog HDL was heavily used in verification and 
simulation for testbenches, test environments, simulation models, and architectural 
models. This approach worked well for smaller designs and simpler test environments. 
  
 
As the average gate count for designs began to approach or exceed one million, 
verification soon became the main bottleneck in the design process. Design teams started 
spending 50-70% of their time in verifying designs rather than creating new ones. 
  
 
Designers quickly realized that to verify complex designs, they needed to use tools that 
contained enhanced verification capabilities. They needed tools that could automate some 
of the tedious processes. Moreover, it was important to find bugs the very first time to 
avoid expensive chip re-spins. 
  
 
To address these needs, a variety of verification methodologies and tools has emerged 
over the past few years. The latest addition to verification methodology is assertion-based 
verification. However, Verilog HDL remains the focal point in the design process. These 
new developments enhance the productivity of verifying Verilog HDL-based designs. 
This chapter gives the reader a basic understanding of these verification concepts that 
complement Verilog HDL. 
  
 
Learning Objectives 
  

• Define the components of a traditional verification flow. 
 

• Understand architectural modeling concepts. 
 

• Explain the use of high-level verification languages (HVLs). 
 

• Describe different techniques for effective simulation. 
 

• Explain the methods for analysis of simulation results. 
 

• Describe coverage techniques. 
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• Understand assertion checking techniques. 
 

• Understand formal verification techniques. 
 

• Describe semi-formal verification techniques. 
 

• Define equivalence checking. 
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15.1 Traditional Verification Flow 
  
 
A traditional verification flow consisting of certain standard components is illustrated in 
Figure 15-1. This flow addresses only the verification perspective. It assumes that logic 
design is done separately. 
  

 
Figure 15-1. Traditional Verification Flow 

  

 
 
As shown in Figure 15-1, the traditional verification flow consists of the following steps:
  

1. The chip architect first needs to create a design specification. In order to create a 
good specification, an analysis of architectural trade-offs has to be performed so 
that the best possible architecture can be chosen. This is usually done by 
simulating architectural models of the design. At the end of this step, the design 
specification is complete. 
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2. When the specification is ready, a functional test plan is created based on the 
design specification. This test plan forms the fundamental framework of the 
functional verification environment. Based on the test plan, test vectors are 
applied to the design-under-test (DUT), which is written in Verilog HDL. 
Functional test environments are needed to apply these test vectors. There are 
many tools available for generating and apply test vectors. These tools also allow 
the efficient creation of test environments. 

 
3. The DUT is then simulated using traditional software simulators. (The DUT is 

normally created by logic designers. Verification engineers simulate the DUT.) 
 

4. The output is then analyzed and checked against the expected results. This can be 
done manually using waveform viewers and debugging tools. Alternately, 
analysis can be automated by the test environment checking the output of the 
DUT or by parsing the log files using a language like PERL. In addition, coverage 
results are analyzed to ensure that the tests have exercised the design thoroughly 
and that the verification goals are met. If the output matches the expected results 
and the coverage goals are met, then the verification is complete. 

 
5. Optionally, additional steps can be taken to decrease the risk of a future design re-

spin. These steps include Hardware Acceleration, Hardware Emulation and 
Assertion based Verification. 

  
 
Earlier, each step in the traditional verification flow was accomplished with Verilog 
HDL. Though Verilog HDL remains the dominant method for creating the DUT, many 
advances have occurred in the other steps of the verification flow. The following sections 
describe these advances in detail. 
  
15.1.1 Architectural Modeling 
  
 
This stage includes design exploration by the architects. The initial model typically does 
not capture exact design behavior, except to the extent required for the initial design 
decisions. For example, a fundamental algorithm like an MPEG decoder might be 
implemented, but the processor to memory bandwidth is not specified. The architect tries 
out several different variations of the model and make some fundamental decisions about 
the system. These decisions may include number of processors, algorithms implemented 
in hardware, memory architecture, and so on. These trade-offs will affect the eventual 
implementation of the target design. 
  
 
Architectural models are often written using C and C++. Though C++ has the advantage 
of object oriented constructs, it does not implement concepts such as parallelism and 
timing that were found in HDLs. Thus, creators of architectural models have to 
implement these concepts in their models. This is very cumbersome, resulting in long 
development times for architectural models. 
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To solve this problem, architectural modeling languages were invented. These languages 
have both the object oriented constructs found in C++ as well as parallelism and timing 
constructs found in HDLs. Thus, they are well-suited for high-level architectural models.
  
 
A likely advancement in the future is the design of chips at the architectural modeling 
level rather than at the RTL level. High-level synthesis tools will convert architectural 
models to Verilog RTL design implementations based on the trade-off inputs. These RTL 
designs can then go through the standard ASIC design and verification flow. Figure 15-2 
shows an example of such a flow. 
  

 
Figure 15-2. Architectural Modeling 

  

 
 
Appendix E, Verilog Tidbits, contains further information on popular architectural 
modeling languages. 
  
15.1.2 Functional Verification Environment 
  
The functional verification of a chip can be divided into three phases. 
  

• Block level verification: Block level verification is usually done by the block 
designer using Verilog for both design and verification. A number of simple test 
cases are executed to ensure that the block functions well enough for chip 
integration. 
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• Full ChipVerification: The goal of full chip verification is to ensure that all the 
features of the full chip described in the functional test plan are covered. 

 
• Extended Verification: The objective of the extended verification is to find all 

corner case bugs in the design. This phase of verification is lengthy since the set 
of tests is not predetermined and it may continue past tape-out. 

  
 
During the functional verification phase, a combination of directed and random 
simulation is used. Directed tests are written by the verification engineers to test a 
specific behavior of the design. They may use random data, but the sequence of events 
are predetermined. Random sequences of legal input transactions are used towards the 
end of functional verifcation and during the extended verification phases in order to 
simulate corner cases which the designer may have missed. 
  
 
As Verilog HDL became popular, designers[1] started using Verilog HDL to both the 
DUT and its surrounding functional verification environment. In a typical HDL-based 
verification environment, 
 
[1] In this chapter, the words "designer" and "verification engineer" have been used 
interchangeably. This is because logic designers perform block level verification and are 
often involved in the full chip verification process. 
  

• The testbench consisted of HDL procedures that wrote data to the DUT or read 
data from it. 

 
• The tests, which called the testbench procedures in sequence to apply manually 

selected input stimuli to the DUT and checked the results, were directed only 
towards specific features of the design as described in the functional test plan. 

  
However, as design sizes exceeded million gates, this approach became less effective 
because 
  

• The tests became harder and more time consuming to write because of decreasing 
controllability of the design. 

 
• Verifying correct behavior became difficult due to decreasing observability into 

internal design states. 
 

• The tests became difficult to read and maintain. 
 

• There were too many corner cases for the available labor. 
 

• Multiple environments became difficult to create and maintain because they used 
little shared code. 
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To make the test environment more reusable and readable, verification engineers needed 
to write the tests and the test environment code in an object oriented programming 
language. High-Level Verification Languages (HVLs) were created to address this need. 
Appendix E, Verilog Tidbits, contains further information on popular HVLs. 
  
 
HVLs are powerful because they combine the object oriented approach of C++ with the 
parallelism and timing constructs in HDLs and are thus best suited for verification. HVLs 
also help in the automatic generation of test stimuli and provide an integrated 
environment for functional verification, including input drivers, output drivers, data 
checking, protocol checking, and coverage. Thus, HVLs maximize productivity for 
creating and maintaining verification environments. 
  
 
Figure 15-3 shows the various components of a typical functional verification 
environment. HVLs greatly improve the designer's ability to create and maintain each test 
component. Note that Verilog HDL is still the primary method of creating a DUT. 
  

 
Figure 15-3. Components of a Functional Verification Environment 

  

 
 
In an HVL-based methodology, the verification components are simulated in the HVL 
simulator and the DUT is simulated with a Verilog simulator. The HVL simulator and the 
Verilog simulator interact with each other to produce the simulation results. Figure 15-4 
shows an example of such an interaction. The HVL simulator and Verilog simulator are 
run as two separate processes and communicate through the Verilog PLI interface. The 
HVL simulator is primarily responsible for all verification components, including test 
generation, input driver, output receiver, data checker, protocol checker, and coverage 
analyzer. The Verilog simulator is responsible for simulating the DUT. 
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Figure 15-4. Interaction between HVL and Verilog Simulators 
  

 
 
The future trend in HVLs is to apply acceleration techniques to HVL simulators to 
greatly speed up the simulations. These acceleration techniques are similar to those used 
for Verilog HDL simulators and are discussed in Section 15.1.3, Simulation. 
  
15.1.3 Simulation 
  
There are three ways to simulate a design: software simulation, hardware acceleration, 
and hardware emulation. 
  
Software Simulation 
  
Software simulators were typically used to run Verilog HDL-based designs. Software 
simulators run on a generic computer or server. They load the Verilog HDL code and 
simulate the behavior in software. Appendix E, Verilog Tidbits, contains further 
information on popular software simulators. 
  
However, when designs started exceeding one million gates, software simulations began 
to consume large amounts of time and became a bottleneck in the verification process. 
Thus, various techniques emerged to accelerate these simulations. Two techniques, 
hardware acceleration and emulation, were invented. 
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Hardware Acceleration 
  
Hardware acceleration is used to speed up existing simulations and to run long sequences 
of random transactions during functional and extended verification phases. 
  
In this technique, the Verilog HDL-based design is mapped onto a reconfigurable 
hardware box. The design is then run on the hardware box to produce simulation results. 
Hardware acceleration[2] can often accelerate simulations by two to three orders of 
magnitude. 
 
[2] Also know as "Simulation Acceleration." 
  
Hardware accelerators can be FPGA-based or processor-based. The simulation is divided 
between the software simulator, which simulates all Verilog HDL code that is not 
synthesizable, and the hardware accelerator, which simulates everything that is 
synthesizable. 
  
Figure 15-5 shows the verification methodology with a hardware accelerator. 
  

 
Figure 15-5. Hardware Acceleration 
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Verification components may be simulated using a Verilog simulator or an HVL 
simulator. The simulator and the hardware accelerator interact with each other to produce 
results. 
  
 
Hardware accelerators can cut simulation times from a matter of days to a few hours. 
Therefore, they can greatly shorten the verification timeline. However, they are expensive 
and need significant set-up time. Another drawback is that they usually require long 
compilation times, which means that they are most useful only for long regression 
simulations. As a result, smaller designs still employ software simulation as the 
simulation technique of choice. 
  
 
Appendix E, Verilog Tidbits, contains further information on popular hardware 
accelerators. 
  
Hardware Emulation 
  
 
Hardware emulation[3] is used to verify the design in a real life environment with real 
system software running on the system. HW emulation is used during the extended 
verification phase since the design must be pretty stable. 
 
[3] Also know as "In-Circuit Emulation." 
  
 
One of the major benefits of hardware emulation is that hardware software integration 
can start before the actual hardware is available, thus saving time in the schedule. By 
running real-life software, conditions that are very difficult to set up in a simulation 
environment can be tested. 
  
 
When the design is complete, software engineers often want to run their software on the 
design before the design is realized on a chip. Here are a few examples of what the 
designer of a chip might want to do before a chip is sent for fabrication: 
  

1. Designers of a microprocessor want to try booting the UNIX operating system. 
 

2. Designers of an MPEG decoder want to have live frames decoded and shown on a 
screen. 

 
3. Designers of a graphics chip want actual frame renderings to show up on the 

screen in real time. 
  
 
Running live systems with the design is an important verification step that reduces the 
possibility of bugs and a design re-spin. However, software simulators and hardware 
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accelerators cannot be used for this purpose because they are too slow and do not have 
the necessary hooks to run a live system. For example, to boot UNIX with a software 
simulation of a design may take many years. Hardware emulation can boot UNIX in a 
few hours. 
  
Figure 15-6 shows the setup of a typical emulation system. Emulation is done so that the 
software application runs exactly as it would on the real chip in a real circuit. The 
software application is oblivious to the fact that it is running on an emulator rather than 
the actual chip. 
  

 
Figure 15-6. Hardware Emulation 

  

 
 
Hardware emulators typically run at megahertz speeds. However, they are very expensive 
and require significant setup time. As a result, smaller designs still employ software 
simulation as the simulation technique of choice. 
  
 
Appendix E, Verilog Tidbits, contains further information on popular hardware 
emulators. 
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15.1.4 Analysis 
  
 
An important step in the traditional verification flow is to analyze the design to check the 
following items: 
  

1. Was the data received equal to the expected data? 
 

2. Was the data received correctly according to the interface protocol? 
  
 
To analyze the correctness of the data value and data protocol, various methods are used.
  

1. Waveform Viewers are used to see the dump files. The designer visually goes 
through the dump files from various tests and ensures that the data value and the 
data protocol are both correct. 

 
2. Log Files contain traces of the simulation run. The designer visually looks at the 

log files from various tests and determines the correctness of the data value and 
the data protocol based on the simulation messages. 

  
These methods are extremely tedious and time-consuming. Every time a test is run, the 
designers has to manually look through the dump files and log files. This method breaks 
down when a large number of simulation runs needs to be analyzed. Therefore, it is 
advisable to make your test environment self-checking. Two components are required for 
building a self-checking test environment: 
  

1. Data Checker 
 

2. Protocol Checker 
  
Data checkers compare each value output from the simulation and check the value on-
the-fly against the expected output. If there is a mismatch, the simulation can be stopped 
immediately to display an error message. If there are no error messages, the simulation is 
deemed to complete successfully. Scoreboards are often used to implement data checkers. 
Scoreboards are often used to indicate the completion transactions and verify that data is 
received on the corrected interface. Scoreboards also ensure that data is not lost in the 
DUT, even if the protocol is followed, and that the data received is correct. 
  
Protocol checkers check on-the-fly whether the data protocol is followed at each input 
and output interface. If there is a violation of protocol, the simulation can be stopped 
immediately to display an error message. If there are no error messages, the simulation is 
deemed to complete successfully. 
  
A self-checking methodology allows the designer to run thousands of tests without 
having to analyze each test for correctness. If there is a failure, the designer can probe 
further into the dump files and the log files to determine the cause of the error. 
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 15.1.5 Coverage 
  
Coverage helps the designer determine when verification is complete. Various methods 
have been developed and used to quantify the verification progress. There are two types 
of coverage: structural and functional. 
  
Structural Coverage 
  
Structural coverage deals with the structure of the Verilog HDL code and tells when key 
portions of that structure have been covered. There are three main types of structural 
coverage: 
  

1. Code coverage: The basic assumption of code coverage is that unexercised code 
potentially bears bugs. However, code coverage checks how well RTL code was 
exercised rather than design functionality. Code coverage does not tell whether 
the verification is complete. It simply tells that verification is not complete until 
100% code coverage is achieved. Therefore, code coverage is useful but it is not a 
complete metric. 

 
2. Toggle coverage: This is one of the oldest coverage measurements. It was 

historically used for manufacturing tests. Toggle coverage monitors the bits of 
logic that have toggled during simulation. If a bit does not toggle from 0 to 1, or 
from 1 to 0, it has not been adequately verified. 

 
Toggle coverage does not ensure completeness. It cannot assure that a specific bit 
toggle sequence that represents high-level functionality has occurred. Toggle 
coverage does not shorten the verification process. It may even prolong the 
verification process as engineers try to toggle a bit, which cannot toggle according 
to the specification. Toggle coverage is very low-level coverage and it is 
cumbersome to relate a specific bit to a high-level test plan item. 

 
3. Branch coverage: Branch coverage checks if all possible branches in a control 

flow are taken. This coverage metric is necessary but not sufficient. 
  
Functional Coverage 
  
Functional coverage perceives the design from a system point of view. Functional 
coverage ensures that all possible legal values of input stimuli are exercised in all 
possible combinations at all possible times. Moreover, functional coverage also provides 
finite state machine coverage, including states and state transitions. 
  
Functional coverage can be enhanced with implementation coverage by inserting 
coverage points or assertions in the RTL code. For example, it enhances the functional 
coverage metric by determining if all transactions have been tested while receiving an 
interrupt or when one of the internal FIFOs is full. 
  
Appendix E, Verilog Tidbits, contains further information on popular coverage tools.  
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15.2 Assertion Checking 
  
 
The traditional verification flow discussed in the previous section is a black box 
approach, i.e., verification relies only on the knowledge of the input and output behavior 
of the system. 
  
Many other verification methodologies have evolved over the past few years to 
complement the traditional verification flow discussed in the previous section. In this 
section and the following sections, we explain some of these new verification 
methodologies that use the white box verification approach, i.e., knowledge of the 
internal structure of the design is needed for verification. 
  
Assertion checking is a form of white box verification. It requires knowledge of internal 
structures of the design. The main purpose of assertion checkers is to improve 
observability. 
  
Assertions are statements about a design's intended behavior. There are two types of 
assertions: 
  

• Temporal assertions ? they describe the timing relationship between signals. 
 

• Static assertions ? they describe a property of a signal that is always true or false. 
  
 
Assertions may be used in the RTL code to describe the intended behavior of a piece of 
Verilog HDL code. The following are examples of such behavior: 
  

• An FSM state register should always be one-hot. 
 

• The full and empty flags of a FIFO should never be asserted at the same time. 
  
Assertions can also be used to describe the behavior of the internal or external interface 
of a chip. For example, the acknowledge signal should always be asserted within five 
cycles of the request signal. Assertions may be verified in simulation or by using formal 
methods. 
  
Assertions do not contribute to the element being designed; they are usually treated as 
comments for logic synthesis. Their sole purpose is to ensure consistency between the 
designer's intention and the design that is created. Figure 15-7 shows the interfaces at 
which assertions could be placed in a FIFO-based design. 
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Figure 15-7. Assertion Checks 
  

 
 
Assertion checks can be used with the traditional verification flow described in Section 
15.1, Traditional Verification Flow. Assertion checks are placed by the designer at 
critical points in the design. During simulation, if there is a failure at that point, the 
designer is notified. 
  
 
Assertion-based verification (ABV) has the following advantages: 
  

1. ABV improves observability. It isolates the problem close to the source. 
 

2. ABV improves verification efficiency. It reduces the number of engineers 
involved in the debugging process. Engineers notified when there are bugs are 
having to look through waveforms and log files for hours to find bugs. Thus, the 
debug process is greatly simplified. 

  
 
Appendix E, Verilog Tidbits, contains further information on popular assertion-checking 
tools. 
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15.3 Formal Verification 
  
 
A well-known white-box approach is formal verification, in which mathematical 
techniques are used to prove an assertion or a property of the design. The property to be 
proven may be related to the chip's overall functional specification, or it may represent 
internal design behavior. Detailed knowledge of the behavior of design structures is often 
required to specify useful properties that are worth proving. Thus, one can prove the 
correctness of a design without doing simulations. Another application of formal 
verification is to prove that the architectural specifications of a design are sound before 
starting with the RTL implementation. 
  
 
A formal verification tool proves a design property by exploring all possible ways to 
manipulate a design. All input changes must conform to the constraints for legal 
behavior. Assertions on interfaces act as constraints to the formal tool to constrain what is 
legal behavior on the inputs. Attempts are then made to prove the assertions in the RTL 
code to be true or false. If the constraints on the inputs are too loose, then the formal 
verification tool can generate counter-examples that rely on illegal input sequences that 
would not occur in the design. If the constraints are too tight, then the tool will not 
explore all possible behavior and will wrongly report the design as "proven." 
  
 
Figure 15-8 shows the verification flow with a formal verification tool. In the best case, 
the tool either proves a particular assertion absolutely or provides a counter-example to 
show the circumstances under which the assertion[4] is not met. 
 
[4] Assertions are not used simply to increase observability. In formal verification, they 
are used as constraints. The formal verification tool explores the state space such that it 
proves the assertion absolutely or produces a counter-example. Thus, assertions also 
increase controllability, i.e., they control how the formal verification tool explores the 
state space to prove a property. 
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Figure 15-8. Formal Verification Flow 
  

 
 
Since formal verification tools explore a design exhaustively, they can run only on 
designs that are limited in size. Typically, beyond 10,000 gates, absolute formal proofs 
become too hard and the tool blows up in terms of computation time and memory usage. 
  
 
The limitations on formal verification tools are not based on number of lines. They are 
based on the complexity of the assertions being proven and the design structure. The 
limitation lies in the number of cycles the algorithm can reach from the seed state(Formal 
verifications tools often use reset as the seed state). 
  
 
To circumvent the problems of formal verification, semi-formal techniques are used. 
  
15.3.1 Semi-formal Verification 
  
 
Semi-formal verification combines the traditional verification flow using test vectors with
the power and thoroughness of formal verification. Semi-formal techniques have the 
following components: 
  

1. Semi-formal methods supplement, but do not replace, simulation with test 
vectors. 

 
2. Embedded assertion checks define the properties targeted by formal methods. 

 
3. Embedded assertion checks define the input constraints. 

 
4. Semi-formal methods explore a limited state space exhaustively from the states 
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reached by simulation, thus maximizing the effect of simulation. The exploration 
is limited to a certain point around the state reached by simulation. 

  
 
During a Verilog simulation, seed states are captured to serve as starting points for formal 
methods. Then formal methods start from the seed states and try to prove the assertions 
completely or describe stimulus sequences that will violate these assertions. The semi-
formal tool proves properties exhaustively in a limited exploration space starting from 
these seed states, thus quickly identifying many corner-cases that would have been 
detected only by extensive simulation test suites. Figure 15-9 shows the verification flow 
with a semi-formal tool. 
  

 
Figure 15-9. Semi-formal Verification Flow 

  

 
 
Formal and semi-formal verification methods have recently received a lot of attention 
because of the increasing complexity of designs. Appendix E, Verilog Tidbits, contains 
further information on popular tools that employ formal and semi-formal verification 
methods. 
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15.3.2 Equivalence Checking 
  
After logic synthesis and place and route tools create gate level netlist and physical 
implementations of the RTL design, it is necessary to check whether these 
implementations match the functionality of the original RTL design. One methodology is 
to re-run all the test vectors used for RTL verification, with the gate level netlist and the 
physical implementation. However, this methodology is extremely time consuming and 
tedious. 
  
Equivalence checking solves this problem. Equivalence checking is one application of 
formal verification. It ensures that the gate level or the physical netlist has the same 
functionality as the Verilog RTL that was simulated. Equivalence checkers build a logical 
model of both the RTL and gate level representations of the design and mathematically 
prove that they are functionally equivalent. Thus, functional verification can focus 
entirely on RTL and there is little need for gate level simulation. 
  
Figure 15-10 shows the equivalence checking flow. 
  

 
Figure 15-10. Equivalence Checking 

  

 
 
Appendix E, Verilog Tidbits, contains further information on popular equivalence 
checking tools. 
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15.4 Summary 
  
 

• A traditional verification flow contains a test-vector-based approach. An 
architectural model is developed to analyze design trade-offs. Once the design is 
finalized, it is verified using test vectors and simulation. Then the results are 
analyzed and coverage is measured. If the analysis meets the verification goals, 
the design is deemed verified. 

 
• Architectural modeling is used by architects for design exploration. The initial 

model of the design typically does not capture exact design behavior, except to 
the extent required for the initial design decisions. Architectural modeling 
languages are suitable for building architectural models. 

 
• Functional verification environments often contain test generators, input drivers, 

output receivers, data checkers, protocol checkers and coverage analyzers. High 
level verification languages (HVLs) can be used to effectively create and maintain 
these environments. 

 
• Software simulators are the most popular tools for simulating Verilog HDL 

designs. Hardware accelerators are used to accelerate simulation by a few orders 
of magnitude. Hardware emulators run in the megahertz range and are used to run 
software applications as if they were running on the real chip. 

 
• Waveforms and log files are the most common methods to analyze the output 

from a simulation. For effectively analysis, it is important to build automatic data 
checker and protocol checker modules. If there is a violation of data value or 
protocol, the simulation is stopped immediately and an error message is 
displayed. A self-checking methodology allows the designer to run thousands of 
tests without having to analyze each test for correctness. 

 
• Toggle coverage, code coverage, and branch coverage are three types of structural 

coverage techniques. Functional coverage perceives the design from a system 
point of view. Functional coverage also provides finite state machine coverage, 
including states and state transitions. A combination of functional coverage and 
other coverage techniques is recommended. 

 
• Assertion checking is a form of white-box verification. It requires knowledge of 

the internal structures of the design. Assertion checking improves observability 
and verification efficiency. Assertion checks are placed by the designer at critical 
points in the design. If there is a failure at that point, the designer is notified. 

 
• Formal verification is a white-box approach in which mathematical techniques are 

used to exhaustively prove an assertion or a property of the design. Semi-formal 
verification combines the traditional verification flow using test vectors with the 
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power and thoroughness of formal verification. Equivalence checking is an 
application of formal verificaton that examines the RTL representation of the 
design and checks to see if it matches the gate level and physical implementations 
of the design. 
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Part 3: Appendices 
  

 
 
A Strength Modeling and Advanced Net Definitions 
Strength levels, signal contention, advanced net definitions. 

 
 
B List of PLI Routines 
A list of all access (acc) and utility (tf) PLI routines. 

 
 
C List of Keywords, System Tasks, and Compiler Directives 
A list of keywords, system tasks, and compiler directives in Verilog HDL. 

 
 
D Formal Syntax Definition 
Formal syntax definition of the Verilog Hardware Description Language. 

 

 
E Verilog Tidbits 
Origins of Verilog HDL, interpreted, compiled and native simulators, event-driven and 
oblivious simulation, cycle simulation, fault simulation, Verilog newsgroup, Verilog 
simulators, and Verilog-related Web sites. 

 
 
F Verilog Examples 
Synthesizable model of a FIFO, behavioral model of a 256K X 16 DRAM. 
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Appendix A. Strength Modeling and 
Advanced Net Definitions 
  
 

• Section A.1.  Strength Levels 
 

• Section A.2.  Signal Contention 
 

• Section A.3.  Advanced Net Types 
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A.1 Strength Levels 
  
 
Verilog allows signals to have logic values and strength values. Logic values are 0, 1, x, 
and z. Logic strength values are used to resolve combinations of multiple signals and to 
represent behavior of actual hardware elements as accurately as possible. Several logic 
strengths are available. Table A-1 shows the strength levels for signals. Driving strengths 
are used for signal values that are driven on a net. Storage strengths are used to model 
charge storage in trireg type nets, which are discussed later in this appendix. 
  
 
Table A-1. Strength Levels 
Strength Level Abbreviation Degree Strength Type 

supply1 Su1 strongest 1 driving 

strong1 St1 driving 

pull1 Pu1 driving 

large1 La1 storage 

weak1 We1 driving 

medium1 e1 storage 

small1 Sm1 

 

storage 

highz1 HiZ1 weakest1 high impedance

highz HiZ0 weakest0 high impedance

small0 Sm0 storage 

medium0 Me0 storage 

weak0 We0 driving 

large0 La0 storage 

pull0 Pu0 driving 

strong0 St0 

 

driving 

supply0 Su0 strongest0 driving 
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A.2 Signal Contention 
  
 
Logic strength values can be used to resolve signal contention on nets that have multiple 
drivers.There are many rules applicable to resolution of contention. However, two cases 
of interest that are most commonly used are described below. 
  
A.2.1 Multiple Signals with Same Value and Different Strength 
  
 
If two signals with same known value and different strength drive the same net, the signal 
with the higher strength wins. 
  

 
 
In the example shown, supply strength is greater than pull. Hence, Su1 wins. 
  
A.2.2 Multiple Signals with Opposite Value and Same Strength 
  
 
When two signals with opposite value and same strength combine, the resulting value is 
x. 
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A.3 Advanced Net Types 
  
 
We discussed resolution of signal contention by using strength levels. There are other 
methods to resolve contention without using strength levels. Verilog provides advanced 
net declarations to model logic contention. 
  
A.3.1 tri 
  
 
The keywords wire and tri have identical syntax and function. However, separate names 
are provided to indicate the purpose of the net. Keyword wire denotes nets with single 
drivers, and tri is denotes nets that have multiple drivers. A multiplexer, as defined 
below, uses the tri declaration. 
  
module mux(out, a, b, control); 
output out; 
input a, b, control; 
tri out; 
wire a, b, control; 
 
bufif0 b1(out, a, control); //drives a when control = 0; z otherwise 
bufif1 b2(out, b, control); //drives b when control = 1; z otherwise 
 
endmodule 
  
 
The net is driven by b1 and b2 in a complementary manner. When b1 drives a, b2 is 
tristated; when b2 drives b, b1 is tristated. Thus, there is no logic contention. If there is 
contention on a tri net, it is resolved by using strength levels. If there are two signals of 
opposite values and same strength, the resulting value of the tri net is x. 
  
A.3.2 trireg 
  
 
Keyword trireg is used to model nets having capacitance that stores values. The default 
strength for trireg nets is medium. Nets of type trireg are in one of two states: 
  

• Driven state? At least one driver drives a 0, 1, or x value on the net. The value is 
continuously stored in the trireg net. It takes the strength of the driver. 

 
• Capacitive state? All drivers on the net have high impedance (z) value. The net 

holds the last driven value. The strength is small, medium, or large (default is 
medium). 

  
trireg (large) out; 
wire a, control; 
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bufif1 (out, a, control); // net out gets value of a when control = 1; 
                         //when control = 0, out retains last value of 
a 
                         //instead of going to z. strength is large. 
  
A.3.3 tri0 and tri1 
  
 
Keywords tri0 and tri1 are used to model resistive pulldown and pullup devices. A tri0 
net has a value 0 if nothing is driving the net. Similarly, tri1 net has a value 1 if nothing is 
driving the net. The default strength is pull. 
  
tri0 out; 
wire a, control; 
 
bufif1 (out, a, control); //net out gets the value of a when control = 
1; 
                          //when control = 0, out gets the value 0 
instead 
                          //of z. If out were declared as tri1, the 
                          //default value of out would be 1 instead of 
0. 
  
A.3.4 supply0 and supply1 
  
 
Keyword supply1 is used to model a power supply. Keyword supply0 is used to model 
ground. Nets declared as supply1 or supply0 have constant logic value and a strength 
level supply (strongest strength level). 
  
supply1 vcc;     //all nets connected to vcc are connected to power 
supply 
supply0 gnd;    //all nets connected to gnd are connected to ground 
  
A.3.5 wor, wand, trior, and triand 
  
 
When there is logic contention, if we simply use a tri net, we will get an x. This could be 
indicative of a design problem. However, sometimes the designer needs to resolve the 
final logic value when there are multiple drivers on the net, without using strength levels. 
Keywords wor, wand, trior, and triand are used to resolve such conflicts. Net wand 
perform the and operation on multiple driver logic values. If any value is 0, the value of 
the net wand is 0. Net wor performs the or operation on multiple driver values. If any 
value is 1, the net wor is 1. Nets triand and trior have the same syntax and function as the 
nets wor and wand. The example below explains the function. 
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wand out1; 
wor out2; 
 
buf (out1, 1'b0); 
buf (out1, 1'b1); //out1 is a wand net; gets the final value 1'b0 
 
buf (out2, 1'b0); 
buf (out2, 1'b1); //out2 is a wor net; gets the final value 1'b1 
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Appendix B. List of PLI Routines 
 
 
A list of PLI acc_ and tf_ routines is provided. VPI routines are not listed.[1] Names, the 
argument list, and a brief description of the routine are shown for each PLI routine. For 
details regarding the use of each PLI routine, refer to the IEEE Standard Verilog 
Hardware Description Language document. 
 
[1] See the "IEEE Standard Verilog Hardware Description Language" document for 
details on VPI routines. 
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B.1 Conventions 
  
 
Conventions to be used for arguments are shown below. 
  
 
Convention Meaning 

char *format Pass formatted string 

char * Pass name of object as a string 

underlined arguments Arguments are optional 

* Pointer to the data type 

......... More arguments of the same type

 
 

 
 
 
  
 
B.2 Access Routines 
  
 
Access routines are classified into five categories: handle, next, value change link, fetch, 
and modify routines. 
  
B.2.1 Handle Routines 
  
 
Handle routines return handles to objects in the design. The names of handle routines 
always starts with the prefix acc_handle_. See Table B-1. 
  
 
Table B-1. Handle Routines 
Return 
Type Name Argument List Description 

handle acc_handle_by_name (char *name, handle 
scope) 

Object from name 
relative to scope. 
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handle acc_handle_condition (handle object) 

Conditional 
expression for 
module path or 
timing check 
handle. 

handle acc_handle_conn (handle terminal); 

Get net connected 
to a primitive, 
module path, or 
timing check 
terminal. 

handle acc_handle_datapath (handle modpath); 

Get the handle to 
data path for an 
edge-sensitive 
module path. 

handle acc_handle_hiconn (handle port); 

Get hierarchically 
higher net 
connection to a 
module port. 

handle acc_handle_interactive_scope ( ); 

Get the handle to 
the current 
simulation 
interactive scope. 

handle acc_handle_loconn (handle port); 

Get hierarchically 
lower net 
connection to a 
module port. 

handle acc_handle_modpath 

(handle module, char 
*src, char *dest); or 
  
 
(handle module, handle 
src, handle dest); 

Get the handle to 
module path whose 
source and 
destination are 
specified. Module 
path can be 
specified by names 
or handles. 

 
handle 

 
acc_handle_notifier 

 
(handle tchk); 

 
Get notifier register 
associated with a 
particular timing 
check. 
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handle acc_handle_object (char *name); 

Get the handle for 
any object, given 
its full or relative 
hierarchical path 
name. 

handle acc_handle_parent (handle object); 

Get the handle for 
own primitive or 
containing module 
or an object. 

handle acc_handle_path (handle outport, handle 
inport); 

Get the handle to 
path from output 
port of a module to 
input port of 
another module. 

handle acc_handle_pathin (handle modpath); 

Get the handle for 
first net connected 
to the input of a 
module path. 

handle acc_handle_pathout (handle modpath); 

Get the handle for 
first net connected 
to the output of a 
module path. 

handle acc_handle_port (handle module, int 
port#); 

Get the handle for 
module port. Port# 
is the position from 
the left in the 
module definition 
(starting with 0). 

handle acc_handle_scope (handle object); 

Get the handle to 
the scope 
containing an 
object. 

handle acc_handle_simulated_net (handle 
collapsed_net_handle); 

Get the handle to 
the net associated 
with a collapsed 
net. 

handle acc_handle_tchk 

(handle module, int 
tchk_type, char 
*netname1, int edge1, 
........); 

Get the handle for a 
specified timing 
check of a module 
or cell. 
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handle acc_handle_tchkarg1 (handle tchk); 

Get net connected 
to the first 
argument of a 
timing check. 

handle acc_handle_tchkarg2 (handle tchk); 

Get net connected 
to the second 
argument of a 
timing check. 

handle acc_handle_terminal (handle primitive, int 
terminal#); 

Get the handle for a 
primitive terminal. 
Terminal# is the 
position in the 
argument list. 

handle acc_handle_tfarg (int arg#); 

Get the handle to 
argument arg# of 
calling system task 
or function that 
invokes the PLI 
routine. 

handle acc_handle_tfinst ( ); 

Get the handle to 
the current user 
defined system task 
or function. 

 
B.2.2 Next Routines 
  
 
Next routines return the handle to the next object in the linked list of a given object type 
in a design. Next routines always start with the prefix acc_next_ and accept reference 
objects as arguments. Reference objects are shown with a prefix current_. See Table B-2.
  
Table B-2. Next Routines 
 
Return 
Type Name Argument List Description 

handle acc_next 
(int obj_type_array[], 
handle module, handle 
current_object); 

Get next object of a 
certain type within a 
scope. Object types such 
as accNet or accRegister 
are defined in 
obj_type_array. 
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handle acc_next_bit (handle vector, handle 
current_bit); 

Get next bit in a vector 
port or array. 

handle acc_next_cell (handle module, handle 
current_cell); 

Get next cell instance in 
a module. Cells are 
defined in a library. 

handle acc_next_cell_load (handle net, handle 
current_cell_load); 

Get next cell load on a 
net. 

handle acc_next_child (handle module, handle 
current_child); 

Get next module instance 
appearing in this module 

handle acc_next_driver (handle net, handle 
current_driver_terminal); 

Get next primitive 
terminal driver that 
drives the net. 

handle acc_next_hiconn (handle port, handle 
current_net); 

Get next higher net 
connection. 

handle acc_next_input (handle path_or_tchk, 
handle current_terminal); 

Get next input terminal 
of a specified module 
path or timing check. 

handle acc_next_load (handle net, handle 
current_load); 

Get next primitive 
terminal driven by a net 
independent of hierarchy.

handle acc_next_loconn (handle port, handle 
current_net); 

Get next lower net 
connection to a module 
port. 

handle acc_next_modpath (handle module, handle 
path); 

Get next path within a 
module. 

handle acc_next_net (handle module, handle 
current_net); 

Get the next net in a 
module. 

handle acc_next output (handle path, handle 
current_terminal); 

Get next output terminal 
of a module path or data 
path. 

handle acc_next_parameter (handle module, handle 
current_parameter); 

Get next parameter in a 
module. 

handle acc_next_port (handle module, handle 
current_port); 

Get the next port in a 
module port list. 

handle acc_next_portout (handle module, handle 
current_port); 

Get next output or inout 
port of a module. 

handle acc_next_primitive (handle module, handle 
current_primitive); 

Get next primitive in a 
module. 
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handle acc_next_scope (handle scope, handle 
current_scope); 

Get next hierarchy scope 
within a certain scope. 

handle acc_next_specparam (handle module, handle 
current_specparam); 

Get next specparam 
declared in a module. 

handle acc_next_tchk (handle module, handle 
current_tchk); 

Get next timing check in 
a module. 

handle acc_next_terminal (handle primitive, handle 
current_terminal); 

Get next terminal of a 
primitive. 

handle acc_next_topmod (handle current_topmod); Get next top level 
module in the design. 

 
B.2.3 Value Change Link (VCL) Routines 
  
 
VCL routines allow the user system task to add and delete objects from the list of objects 
that are monitored for value changes. VCL routines always begin with the prefix 
acc_vcl_ and do not return a value. See Table B-3. 
  
 
Table B-3. Value Change Link Routines 
 
Return 
Type Name Argument List Description 

void acc_vcl_add 
(handle object, int 
(*consumer_routine) (), char 
*user_data, int VCL_flags); 

Tell the Verilog simulator to 
call the consumer routine with 
value change information 
whenever the value of an 
object changes. 

void acc_vcl_delete 
(handle object, int 
(*consumer_routine) (), char 
*user_data, int VCL_flags); 

Tell the Verilog simulator to 
stop calling the consumer 
routine when the value of an 
object changes. 

 
B.2.4 Fetch Routines 
  
 
Fetch routines can extract a variety of information about objects. Information such as full 
hierarchical path name, relative name, and other attributes can be obtained. Fetch routines 
always start with the prefix acc_fetch_. See Table B-4. 
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Table B-4. Fetch Routines 
 
Return 
Type Name Argument List Description 

int acc_fetch_argc ( ); 
Get the number of 
invocation command-line 
arguments. 

char ** acc_fetch_argv ( ); 
Get the array of 
invocation command-line 
arguments. 

double acc_fetch_attribute 
(handle object, char 
*attribute, double 
default); 

Get the attribute of a 
parameter or specparam. 

char * acc_fetch_defname (handle object); 
Get the defining name of 
a module or a primitive 
instance. 

int acc_fetch_delay_mode (handle module); Get delay mode of a 
module instance. 

bool acc_fetch_delays 

(handle object, double 
*rise, double *fall, 
double *turnoff); 
  
 
(handle object, double 
*d1, *d2, *d3, *d4 *d5, 
*d6); 

Get typical delay values 
for primitives, module 
paths, timing checks, or 
module input ports. 

int acc_fetch_direction (handle object); 
Get the direction of a port 
or terminal, i.e., input, 
output, or inout. 

int acc_fetch_edge (handle 
path_or_tchk_term); 

Get the edge specifier 
type of a path input or 
output terminal or a 
timing check input 
terminal. 

char * acc_fetch_fullname (handle object); 
Get the full hierarchical 
name of any name object 
or module path. 

int acc_fetch_fulltype (handle object); 

Get the type of the object. 
Return a predefined 
integer constant that tells 
type. 



 
 
 

 
 

377

int acc_fetch_index (handle 
port_or_terminal); 

Get the index for a port 
or terminal for gate, 
switch, UDP instance, 
module, etc. Zero 
returned for the first 
terminal. 

void acc_fetch_location (p_location loc_p, 
handle object); 

Get the location of an 
object in a Verilog source 
file. p_location is a 
predefined data structure 
that has file name and 
line number in the file. 

char * acc_fetch_name (handle object); 
Get instance of object or 
module path within a 
module. 

int acc_fetch_paramtype (handle parameter); 
Get the data type of 
parameter, integer, string, 
real, etc. 

double acc_fetch_paramval (handle parameter); 

Get value of parameter or 
specparam. Must cast 
return values to integer, 
string, or double. 

int acc_fetch_polarity (handle path); Get polarity of a path. 

int acc_fetch_precision ( ); Get the simulation time 
precision. 

bool acc_fetch_pulsere 
(handle path, double 
*r1, double *e1,double 
*r2, double *e2.........) 

Get pulse control values 
for module paths based 
on reject values and 
e_values for transitions. 

int acc_fetch_range (handle vector, int 
*msb, int *lsb); 

Get the most significant 
bit and least significant 
bit range values of a 
vector. 

int acc_fetch_size (handle object); Get number of bits in a 
net, register, or port. 

double acc_fetch_tfarg (int arg#); 
Get value of system task 
or function argument 
indexed by arg#. 
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int acc_fetch_tfarg_int (int arg#); 

Get integer value of 
system task or function 
argument indexed by 
arg#. 

char * acc_fetch_tfarg_str (int arg#); 

Get string value of 
system task or function 
argument indexed by 
arg#. 

void acc_fetch_timescale_info
(handle object, 
p_timescale_info 
timescale_p); 

Get the time scale 
information for an object. 
p_timescale_info is a 
pointer to a predefined 
time scale data structure. 

int acc_fetch_type (handle object); 

Get the type of object. 
Return a predefined 
integer constant such as 
accIntegerVar, 
accModule, etc. 

char * acc_fetch_type_str (handle object); 

Get the type of object in 
string format. Return a 
string of type 
accIntegerVar, 
accParameter, etc. 

char * acc_fetch_value (handle object, char 
*format); 

Get the logic or strength 
value of a net, register, or 
variable in the specified 
format. 

 
B.2.5 Utility Access Routines 
  
Utility access routines perform miscellaneous operations related to access routines. See 
Table B-5. 
  
Table B-5. Utility Access Routines 
 
Return 
Type Name Argument List Description 

void acc_close ( ); 

Free internal memory used 
by access routines and reset 
all configuration 
parameters to default 
values. 
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handle 
* acc_collect 

(handle 
*next_routine, 
handle ref_object, 
int *count); 

Collect all objects related 
to a particular reference 
object by successive calls 
to an acc_next routine. 
Return an array of handles. 

bool acc_compare_handles (handle object1, 
handle object2); 

Return true if both handles 
refer to the same object. 

void acc_configure (int config_param, 
char *config_value); 

Set parameters that control 
the operation of various 
access routines. 

int acc_count 
(handle 
*next_routine, 
handle ref_object); 

Count the number of 
objects in a reference 
object such as a module. 
The objects are counted by 
successive calls to the 
acc_next routine 

void acc_free (handle 
*object_handles); 

Free memory allocated by 
acc_collect for storing 
object handles. 

void acc_initialize ( ); 

Reset all access routine 
configuration parameters. 
Call when entering a user-
defined PLI routine. 

bool acc_object_in_typelist (handle object, int 
object_types[]); 

Match the object type or 
property against an array of 
listed types or properties. 

bool acc_object_of_type (handle object, int 
object_type); 

Match the object type or 
property against a specific 
type or property. 

int acc_product_type ( ); Get the type of software 
product being used. 

char * acc_product_version ( ); Get the version of software 
product being used. 

int acc_release_object (handle object); 
Deallocate memory 
associated with an input or 
output terminal path. 

void acc_reset_buffer ( ); Reset the string buffer. 

handle acc_set_interactive_scope ( ); Set the interactive scope of 
a software implementation. 
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void acc_set_scope (handle module, char 
*module_name); 

Set the scope for searching 
for objects in a design 
hierarchy. 

char * acc_version ( ); Get the version of access 
routines being used. 

 
B.2.6 Modify Routines 
  
 
Modify routines can modify internal data structures. See Table B-6. 
  
 
Table B-6. Modify Routines 
 
Return 
Type Name Argument List Description 

void acc_append_delays 

(handle object, 
double rise, double 
fall, double z); or 
  
 
(handle object, 
double d1, ..., double 
d6); or 
  
 
(handle object, 
double limit); or 
  
 
(handle object 
double delay[]); 

Add delays to existing delay 
values for primitives, module 
paths, timing checks, or module 
input ports. Can specify 
rise/fall/turn-off or 6 delay or 
timing check or min:typ:max 
format. 

bool acc_append_pulsere 

(handle path, double 
r1, ...., double r12, 
double e1, ..., double 
e12); 

Add to the existing pulse control 
values of a module path. 
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void acc_replace_delays 

(handle object, 
double rise, double 
fall, double z); or 
  
 
(handle object, 
double d1, ..., double 
d6); or 
  
 
(handle object, 
double limit); or 
  
 
(handle object 
double delay[]); 

Replace delay values for 
primitives, module paths, timing 
checks, or module input ports. 
Can specify rise/fall/turn-off or 6 
delay or timing check or 
min:typ:max format. 

bool acc_replace_pulsere 

(handle path, double 
r1, ...., double r12, 
double e1, ..., double 
e12); 

Set pulse control values of a 
module path as a percentage of 
path delays. 

void acc_set_pulsere (handle path, double 
reject, double e); 

Set pulse control percentages for 
a module path. 

void acc_set_value 

(handle object, 
p_setval_value 
value_P, 
p_setval_delay 
delay_P); 

Set value for a register or a 
sequential UDP. 
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B.3 Utility (tf_) Routines 
  
 
Utility (tf_) routines are used to pass data in both directions across the Verilog/user C 
routine boundary. All the tf_ routines assume that operations are being performed on 
current instances. Each tf_ routine has a tf_i counterpart in which the instance pointer 
where the operations take place has to be passed as an additional argument at the end of 
the argument list. See Table B-7 through B-16. 
  
B.3.1 Get Calling Task/Function Information 
  
 
Table B-7. Get Calling Task/Function Information 
 
Return 
Type Name Argument 

List Description 

char * tf_getinstance ( ); 
Get the pointer to the current instance of the 
simulation task or function that called the 
user's PLI application program. 

char * tf_mipname ( ); 
Get the Verilog hierarchical path name of the 
simulation module containing the call to the 
user's PI application program. 

char * tf_ispname ( ) 
Get the Verilog hierarchical path name of the 
scope containing the call to the user's PLI 
application program. 

 
B.3.2 Get Argument List Information 
  
 
Table B-8. Get Argument List Information 
 
Return 
Type Name Argument List Description 

int tf_nump ( ); 
Get the number of 
parameters in the argument 
list. 

int tf_typep (int param_index#); 
Get the type of a particular 
parameter in the argument 
list. 
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int tf_sizep (int param_index#); Get the length of a parameter 
in bits. 

t_tfexprinfo 
* tf_expinfo (int param_index#, struct 

t_tfexprinfo *exprinfo_p); 
Get information about a 
parameter expression. 

t_tfexprinfo 
* tf_nodeinfo (int param_index#, struct 

t_tfexprinfo *exprinfo_p); 
Get information about a node 
value parameter. 

 
B.3.3 Get Parameter Values 
  
 
Table B-9. Get Parameter Values 
 
Return 
Type Name Argument List Description 

int tf_getp (int param_index#); Get the value of parameter in 
integer form. 

double tf_getrealp (int param_index#); 
Get the value of a parameter in 
double-precision floating-point 
form. 

int tf_getlongp (int *aof_highvalue, int 
para_index#); 

Get parameter value in long 64-
bit integer form. 

char * tf_strgetp (int param_index#, char 
format_character); 

Get parameter value as a 
formatted character string. 

char * tf_getcstringp (int param_index#); Get parameter value as a C 
character string. 

void tf_evaluatep (int param_index#); Evaluate a parameter expression 
and get the result. 

 
B.3.4 Put Parameter Value 
  
 
Table B-10. Put Parameter Values 
 
Return 
Type Name Argument List Description 

void tf_putp (int param_index#, int 
value); 

Pass back an integer value to 
the calling task or function. 
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void tf_putrealp (int param_index#, double 
value; 

Pass back a double-precision 
floating-point value to the 
calling task or function. 

void tf_putlongp (int param_index#, int 
lowvalue, int highvalue); 

Pass back a double-precision 
64-bit integer value to the 
calling task or function. 

void tf_propagatep (int param_index#); Propagate a node parameter 
value. 

int tf_strdelputp 

(int param_index#, int 
bitlength, char format_char, 
int delay, int delaytype, 
char *value_p); 

Pass back a value and 
schedule an event on the 
parameter. The value is 
expressed as a formatted 
character string, and the 
delay, as an integer value. 

int tf_strrealdelputp 

(int param_index#, int 
bitlength, char format_char, 
int delay, double delaytype, 
char *value_p); 

Pass back a string value with 
an attached real delay. 

int tf_strlongdelputp 

(int param_index#, int 
bitlength, char format_char, 
int lowdelay,int highdelay, 
int delaytype, char 
*value_p); 

Pass back a string value with 
an attached long delay. 

 
B.3.5 Monitor Parameter Value Changes 
  
 
Table B-11. Monitor Parameter Value Changes 
 
Return 
Type Name Argument List Description 

void tf_asynchon ( ); Enable a user PLI routine to be called 
whenever a parameter changes value. 

void tf_asynchoff ( ); Disable asynchronous calling. 

void tf_synchronize ( ); 
Synchronize parameter value changes 
to the end of the current simulation time 
slot. 

void tf_rosynchronize ( ); 
Synchronize parameter value changes 
and suppress new event generation 
during current simulation time slot. 
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int 

 
tf_getpchange 

 
(int 
param_index#); 

 
Get the number of the parameter that 
changed value. 

int tf_copypvc_flag (int 
param_index#); Copy a parameter value change flag. 

int tf_movepvc_flag (int 
param_index#); Save a parameter value change flag. 

int tf_testpvc_flag (int 
param_index#); Test a parameter value change flag. 

 
B.3.6 Synchronize Tasks 
  
 
Table B-12. Synchronize Tasks 
 
Return 
Type Name Argument List Description 

int tf_gettime ( ); Get current simulation 
time in integer form. 

  tf_getrealtime     

int tf_getlongtime (int *aof_hightime); Get current simulation 
time in long integer form. 

char * tf_strgettime ( ); Get current simulation 
time as a character string. 

int tf_getnextlongtime (int *aof_lowtime, int 
*aof_hightime); 

Get time of the next 
scheduled simulation 
event. 

int tf_setdelay (int delay); 

Cause user task to be 
reactivated at a future 
simulation time expressed 
as an integer value delay. 

int tf_setlongdelay (int lowdelay, int 
highdelay); 

Cause user task to be 
reactivated after a long 
integer value delay. 

int tf_setrealdelay (double delay, char 
*instance); 

Activate the misctf 
application at a particular 
simulation time. 
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void tf_scale_longdelay 

(char *instance, int 
lowdelay, int hidelay, int 
*aof_lowtime, int 
*aof_hightime ); 

Convert a 64-bit integer 
delay to internal 
simulation time units. 

void tf_scale_realdelay 
(char *instance, double 
delay, double 
*aof_realdelay); 

Convert a double-precision 
floating-point delay to 
internal simulation time 
units. 

void tf_unscale_longdelay 

(char *instance, int 
lowdelay, int hidelay, int 
*aof_lowtime, int 
*aof_hightime ); 

Convert a delay from 
internal simulation time 
units to the time scale of a 
particular module. 

void tf_unscale_realdelay 
(char *instance, double 
delay, double 
*aof_realdelay); 

Convert a delay from 
internal simulation time 
units to the time scale of a 
particular module. 

void tf_clearalldelays ( ); Clear all reactivation 
delays. 

int tf_strdelputp 

(int param_index#, int 
bitlength, char 
format_char, int delay, int 
delaytype, char *value_p);

Pass back a value and 
schedule an event on the 
parameter. The value is 
expressed as a formatted 
character string and the 
delay as an integer value. 

int tf_strrealdelputp 

(int param_index#, int 
bitlength, char 
format_char, int delay, 
double delaytype, char 
*value_p); 

Pass back a string value 
with an attached real 
delay. 

int tf_strlongdelputp 

(int param_index#, int 
bitlength, char 
format_char, int 
lowdelay,int highdelay, 
int delaytype, char 
*value_p); 

Pass back a string value 
with an attached long 
delay. 
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B.3.7 Long Arithmetic 
  
Table B-13. Long Arithmetic 
 
Return 
Type Name Argument List Description 

void tf_add_long 
(int *aof_low1, int 
*aof_high1, int low2, int 
high2); 

Add two 64-bit long 
values. 

void tf_subtract_long 
(int *aof_low1, int 
*aof_high1, int low2, int 
high2); 

Subtract one long value 
from another. 

void tf_multiply_long 
(int *aof_low1, int 
*aof_high1, int low2, int 
high2); 

Multiply two long 
values. 

void tf_divide_long 
(int *aof_low1, int 
*aof_high1, int low2, int 
high2); 

Divide one long value by 
another. 

int tf_compare_long (int low1, int high1, int low2, 
int high2); 

Compare two long 
values. 

char * tf_longtime_tostr (int lowtime, int hightime); Convert a long value to a 
character string. 

void tf_real_to_long (double real, int *aof_low, int 
*aof_high); 

Convert a real number to 
a 64-bit integer. 

void tf_long_to_real (int low, int high, double 
*aof_real); 

Convert a long integer to 
a real number. 

 
B.3.8 Display Messages 
  
 
Table B-14. Display Messages 
 
Return 
Type Name Argument List Description 

void io_printf (char *format, 
arg1,......); 

Write messages to the standard 
output and log file. 

void io_mcdprintf (char *format, 
arg1,......); 

Write messages to multiple-channel 
descriptor files. 
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void tf_error (char *format, 
arg1,......); Print error message. 

void tf_warning (char *format, 
arg1,......); Print warning message. 

void tf_message 
(int level, char facility, 
char code, char 
*message, arg1, ....); 

Print error and warning messages, 
using the Verilog simulator's 
standard error handling facility. 

void tf_text (char *format, arg1, 
.....); 

Store error message information in 
a buffer. Displayed when 
tf_message is called. 

 
B.3.9 Miscellaneous Utility Routines 
  
Table B-15. Miscellaneous Utility Routines 
 
Return 
Type Name Argument List Description 

void tf_dostop ( ); Halt the simulation and put the 
system in interactive mode. 

void tf_dofinish ( ); Terminate the simulation. 

char * mc_scanplus_args (char *startarg); 
Get command line plus (+) 
options entered by the user in 
interactive mode. 

void tf_write_save (char *blockptr, int 
blocklength); 

Write PLI application data to a 
save file. 

int tf_read_restart (char *blockptr, int 
block_length); 

Get a block of data from a 
previously written save file. 

void tf_read_restore (char *blockptr, int 
blocklength); Retrieve data from a save file. 

void tf_dumpflush ( ); Dump parameter value changes 
to a system dump file. 

char * tf_dumpfilename ( ); Get name of system dump file. 
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B.3.10 Housekeeping Tasks 
  
Table B-16. Housekeeping Tasks 
 
Return 
Type Name Argument List Description 

void tf_setworkarea (char 
*workarea); 

Save a pointer to the work area of a PLI 
application task/function instance. 

char * tf_getworkarea ( ); Retrieve pointer to a work area. 

void tf_setroutine (char (*routine) 
() ); 

Store pointer to a PLI application 
task/function. 

char * tf_getroutine ( ); Retrieve pointer to a PLI application 
task/function. 

void tf_settflist (char *tflist); Store pointer to a PLI application 
task/function instance. 

char * tf_gettflist ( ); Retrieve pointer to a PLI application 
task/function instance.  
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Appendix C. List of Keywords, System 
Tasks, and Compiler Directives 
  
 

• Section C.1.  Keywords 
 

• Section C.2.  System Tasks and Functions 
 

• Section C.3.  Compiler Directives 
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C.1 Keywords 
  
 
Keywords are predefined, nonescaped identifiers that define the language constructs. An 
escaped identifier is never treated as a keyword. All keywords are defined in lowercase. 
 
[1] From IEEE Std. 1364-2001. Copyright 2001 IEEE. All rights reserved. 
  
 
The list is sorted in alphabetical order. 
  
 
always ifnone rnmos 

and incdir rpmos 

assign include rtran 

automatic initial rtranif0 

begin inout rtranif1 

buf input scalared 

bufif0 instance showcancelled

bufif1 integer signed 

case join small 

casex large specify 

casez liblist specparam 

cell library strong0 

cmos localparam strong1 

config macromodule supply0 

deassign medium supply1 

default module table 

defparam nand task 

design negedge time 

disable nmos tran 

edge nor tranif0 

else noshowcancelled tranif1 



 
 
 

 
 

392

end not tri 

endcase notif0 tri0 

endconfig notif1 tri1 

endfunction or triand 

endgenerate output trior 

endmodule parameter trireg 

endprimitive pmos unsigned 

endspecify posedge use 

endtable primitive vectored 

endtask pull0 wait 

event pull1 wand 

for pulldown weak0 

force pullup weak1 

forever pulsestyle_onevent while 

fork pulsestyle_ondetect wire 

function rcmos wor 

generate real xnor 

genvar realtime xor 

highz0 reg   

highz1 release   

if repeat    
 
 
  
 
 
C.2 System Tasks and Functions 
  
 
The following is a list of keywords frequently used by Verilog simulators for names of 
system tasks and functions. Not all system tasks and functions are explained in this book. 
For details, refer to the IEEE Standard Verilog Hardware Description Language 
document. This list is sorted in alphabetical order. 
  
$bitstoreal        $countdrivers     $display           $fclose 
$fdisplay          $fmonitor         $fopen             $fstrobe 
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$fwrite            $finish           $getpattern        $history 
$incsave           $input            $itor              $key 
$list              $log              $monitor           $monitoroff 
$monitoron         $nokey 
  
 

 
  
 
 
C.3 Compiler Directives 
  
 
The following is a list of keywords frequently used by Verilog simulators for specifying 
compiler directives. Only the most frequently used directives are discussed in the book. 
For details, refer to the IEEE Standard Verilog Hardware Description Language 
document. This list is sorted in alphabetical order. 
  
'accelerate              'autoexpand_vectornets     'celldefine 
'default_nettype         'define                    'define 
'else                    'elsif                     'endcelldefine 
'endif                   'endprotect                'endprotected 
'expand_vectornets       'ifdef                     'ifndef 
'include                 'noaccelerate              
'noexpand_vectornets 
'noremove_gatenames      'nounconnected_drive       'protect 
'protected               'remove_gatenames          'remove_netnames 
'resetall                'timescale                 'unconnected_drive 
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Appendix D. Formal Syntax Definition 
 
This appendix contains the formal definition[1] of the Verilog-2001 standard in Backus-
Naur Form (BNF). The formal definition contains a description of every possible usage 
of Verilog HDL. Therefore, it is very useful if there is a doubt on the usage of certain 
Verilog HDL syntax. 
 
[1] From IEEE Std. 1364-2001. Copyright 2001 IEEE. All rights reserved. 
 
Though the BNF may be hard to understand initially, the following summary may help 
the reader better understand the formal syntax definition: 
 

1. Bold text represents literal words themselves (these are called terminals). 
Example: module. 

 
2. Non-bold text (possibly with underscores) represents syntactic categories (these 

are called non terminals). Example: port_identifier. 
 

3. Syntactic categories are defined using the form: syntactic_category ::= definition 
 

4. [ ] square brackets (non-bold) surround optional items. 
 

5. { } curly brackets (non-bold) surrounds items that can repeat zero or more times. 
 

6. | vertical line (non-bold) separates alternatives. 
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D.1 Source Text 
  
D.1.1 Library Source Text 
  
 
library_text ::= { library_descriptions } 
library_descriptions ::= 
       library_declaration 
     | include_statement 
     | config_declaration 
library_declaration ::= 
       library library_identifier file_path_spec [ { , file_path_spec } ] 
       [ -incdir file_path_spec [ { , file_path_spec } ] ; 
file_path_spec ::= file_path 
include_statement ::= include <file_path_spec> ; 
 
D.1.2 Configuration Source Text 
  
config_declaration ::= 
      config config_identifier ; 
      design_statement 
      {config_rule_statement} 
      endconfig 
design_statement ::= design { [library_identifier.]cell_identifier } ; 
config_rule_statement ::= 
      default_clause liblist_clause 
    | inst_clause liblist_clause 
    | inst_clause use_clause 
    | cell_clause liblist_clause 
    | cell_clause use_clause 
default_clause ::= default 
inst_clause ::= instance inst_name 
inst_name ::= topmodule_identifier{.instance_identifier} 
cell_clause ::= cell [ library_identifier.]cell_identifier 
liblist_clause ::= liblist [{library_identifier}] 
use_clause ::= use [library_identifier.]cell_identifier[:config] 
 
D.1.3 Module and Primitive Source Text 
  
source_text ::= { description } 
description ::= 
      module_declaration 
    | udp_declaration 
module_declaration ::= 
    { attribute_instance } module_keyword module_identifier [ 
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module_parameter_port_list 
               ] 
          [ list_of_ports ] ; { module_item } 
          endmodule 
    | { attribute_instance } module_keyword module_identifier [ 
module_parameter_port_list  
                ] 
          [ list_of_port_declarations ] ; { non_port_module_item } 
          endmodule 
module_keyword ::= module | macromodule 
 
D.1.4 Module Parameters and Ports 
  
module_parameter_port_list ::= # ( parameter_declaration { , parameter_declaration } ) 
list_of_ports ::= ( port { , port } ) 
list_of_port_declarations ::= 
      ( port_declaration { , port_declaration } ) 
     |( ) 
port ::= 
      [ port_expression ] 
     |. port_identifier ( [ port_expression ] ) 
port_expression ::= 
      port_reference 
     |{ port_reference { , port_reference } } 
port_reference ::= 
      port_identifier 
     |port_identifier [ constant_expression ] 
     |port_identifier [ range_expression ] 
port_declaration ::= 
      {attribute_instance} inout_declaration 
     |{attribute_instance} input_declaration 
     |{attribute_instance} output_declaration 
 
D.1.5 Module Items 
  
module_item ::= 
     module_or_generate_item 
   | port_declaration ; 
   | { attribute_instance } generated_instantiation 
   | { attribute_instance } local_parameter_declaration 
   | { attribute_instance } parameter_declaration 
   | { attribute_instance } specify_block 
   | { attribute_instance } specparam_declaration 
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module_or_generate_item ::= 
     { attribute_instance } module_or_generate_item_declaration 
   | { attribute_instance } parameter_override 
   | { attribute_instance } continuous_assign 
   | { attribute_instance } gate_instantiation 
   | { attribute_instance } udp_instantiation 
   | { attribute_instance } module_instantiation 
   | { attribute_instance } initial_construct 
   | { attribute_instance } always_construct 
module_or_generate_item_declaration ::= 
     net_declaration 
   | reg_declaration 
   | integer_declaration 
   | real_declaration 
   | time_declaration 
   | realtime_declaration 
   | event_declaration 
   | genvar_declaration 
   | task_declaration 
   | function_declaration 
non_port_module_item ::= 
     { attribute_instance } generated_instantiation 
   | { attribute_instance } local_parameter_declaration 
   | { attribute_instance } module_or_generate_item 
   | { attribute_instance } parameter_declaration 
   | { attribute_instance } specify_block 
   | { attribute_instance } specparam_declaration 
parameter_override ::= defparam list_of_param_assignments ; 
 
 
  
 
 
D.2 Declarations 
  
D.2.1 Declaration Types 
  
Module parameter declarations 
  
local_parameter_declaration ::= 
      localparam [ signed ] [ range ] list_of_param_assignments ; 
    | localparam integer list_of_param_assignments ; 
    | localparam real list_of_param_assignments ; 
    | localparam realtime list_of_param_assignments ; 
    | localparam time list_of_param_assignments ; 
parameter_declaration ::= 
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      parameter [ signed ] [ range ] list_of_param_assignments ; 
    | parameter integer list_of_param_assignments ; 
    | parameter real list_of_param_assignments ; 
    | parameter realtime list_of_param_assignments ; 
    | parameter time list_of_param_assignments ; 
specparam_declaration ::= specparam [ range ] list_of_specparam_assignments ; 
 
Port declarations 
  
inout_declaration ::= inout [ net_type ] [ signed ] [ range ] 
          list_of_port_identifiers 
input_declaration ::= input [ net_type ] [ signed ] [ range ] 
          list_of_port_identifiers 
output_declaration ::= 
      output [ net_type ] [ signed ] [ range ] 
          list_of_port_identifiers 
    | output [ reg ] [ signed ] [ range ] 
          list_of_port_identifiers 
    | output reg [ signed ] [ range ] 
          list_of_variable_port_identifiers 
    | output [ output_variable_type ] 
          list_of_port_identifiers 
    | output output_variable_type 
          list_of_variable_port_identifiers 
 
Type declarations 
  
event_declaration ::= event list_of_event_identifiers ; 
genvar_declaration ::= genvar list_of_genvar_identifiers ; 
integer_declaration ::= integer list_of_variable_identifiers ; 
net_declaration ::= 
      net_type [ signed ] 
           [ delay3 ] list_of_net_identifiers ; 
    | net_type [ drive_strength ] [ signed ] 
           [ delay3 ] list_of_net_decl_assignments ; 
    | net_type [ vectored | scalared ] [ signed ] 
           range [ delay3 ] list_of_net_identifiers ; 
    | net_type [ drive_strength ] [ vectored | scalared ] [ signed ] 
           range [ delay3 ] list_of_net_decl_assignments ; 
    | trireg [ charge_strength ] [ signed ] 
           [ delay3 ] list_of_net_identifiers ; 
    | trireg [ drive_strength ] [ signed ] 
           [ delay3 ] list_of_net_decl_assignments ; 
    | trireg [ charge_strength ] [ vectored | scalared ] [ signed ] 
           range [ delay3 ] list_of_net_identifiers ; 
    | trireg [ drive_strength ] [ vectored | scalared ] [ signed ] 
           range [ delay3 ] list_of_net_decl_assignments ; 
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real_declaration ::= real list_of_real_identifiers ; 
realtime_declaration ::= realtime list_of_real_identifiers ; 
reg_declaration ::= reg [ signed ] [ range ] 
           list_of_variable_identifiers ; 
time_declaration ::= time list_of_variable_identifiers ; 
 
D.2.2 Declaration Data Types 
  
Net and variable types 
  
net_type ::= 
      supply0 | supply1 
    | tri  | triand | trior | tri0 | tri1 
    | wire | wand | wor 
output_variable_type ::= integer | time 
real_type ::= 
      real_identifier [ = constant_expression ] 
    | real_identifier dimension { dimension } 
variable_type ::= 
      variable_identifier [ = constant_expression ] 
    | variable_identifier dimension { dimension } 
 
Strengths 
  
drive_strength ::= 
      ( strength0 , strength1 ) 
    | ( strength1 , strength0 ) 
    | ( strength0 , highz1 ) 
    | ( strength1 , highz0 ) 
    | ( highz0 , strength1 ) 
    | ( highz1 , strength0 ) 
strength0 ::= supply0 | strong0 | pull0 | weak0 
strength1 ::= supply1 | strong1 | pull1 | weak1 
charge_strength ::= ( small ) | ( medium ) | ( large ) 
 
Delays 
  
delay3 ::= # delay_value | # ( delay_value [ , delay_value [ , delay_value ] ] ) 
delay2 ::= # delay_value | # ( delay_value [ , delay_value ] ) 
delay_value ::= 
      unsigned_number 
    | parameter_identifier 
    | specparam_identifier 
    | mintypmax_expression 
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D.2.3 Declaration Lists 
  
list_of_event_identifiers ::= event_identifier [ dimension { dimension }] 
          { , event_identifier [ dimension { dimension }] } 
list_of_genvar_identifiers ::= genvar_identifier { , genvar_identifier } 
list_of_net_decl_assignments ::= net_decl_assignment { , net_decl_assignment } 
list_of_net_identifiers ::= net_identifier [ dimension { dimension }] 
          { , net_identifier [ dimension { dimension }] } 
list_of_param_assignments ::= param_assignment { , param_assignment } 
list_of_port_identifiers ::= port_identifier { , port_identifier } 
list_of_real_identifiers ::= real_type { , real_type } 
list_of_specparam_assignments ::= specparam_assignment { , specparam_assignment } 
list_of_variable_identifiers ::= variable_type { , variable_type } 
list_of_variable_port_identifiers ::= port_identifier [ = constant_expression ] 
                  { , port_identifier [ = constant_expression ] } 
 
D.2.4 Declaration Assignments 
  
net_decl_assignment ::= net_identifier = expression 
param_assignment ::= parameter_identifier = constant_expression 
specparam_assignment ::= 
     specparam_identifier = constant_mintypmax_expression 
   | pulse_control_specparam 
pulse_control_specparam ::= 
      PATHPULSE$ = ( reject_limit_value [ , error_limit_value ] ) ; 
   | PATHPULSE$specify_input_terminal_descriptor$specify_output_terminal_descriptor
                    = ( reject_limit_value [ , error_limit_value ] ) ; 
error_limit_value ::= limit_value 
reject_limit_value ::= limit_value 
limit_value ::= constant_mintypmax_expression 
 
D.2.5 Declaration Ranges 
  
dimension ::= [ dimension_constant_expression : dimension_constant_expression ] 
range ::= [ msb_constant_expression : lsb_constant_expression ] 
 
D.2.6 Function Declarations 
  
function_declaration ::= 
        function [ automatic ] [ signed ] [ range_or_type ] function_identifier ; 
        function_item_declaration { function_item_declaration } 
        function_statement 
        endfunction 
      | function [ automatic ] [ signed ] [ range_or_type ] function_identifier ( 
                function_port_list ) ; 
        block_item_declaration { block_item_declaration } 
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        function_statement 
        endfunction 
function_item_declaration ::= 
        block_item_declaration 
      | tf_input_declaration ; 
function_port_list ::= { attribute_instance } tf_input_declaration { , { attribute_instance }
              tf_input_declaration } 
range_or_type ::= range | integer | real | realtime | time 
 
D.2.7 Task Declarations 
  
task_declaration ::= 
       task [ automatic ] task_identifier ; 
       { task_item_declaration } 
       statement 
       endtask 
     | task [ automatic ] task_identifier ( task_port_list ) ; 
       { block_item_declaration } 
       statement 
       endtask 
 
task_item_declaration ::= 
       block_item_declaration 
     | { attribute_instance } tf_input_declaration ; 
     | { attribute_instance } tf_output_declaration ; 
     | { attribute_instance } tf_inout_declaration ; 
task_port_list ::= task_port_item { , task_port_item } 
task_port_item ::= 
       { attribute_instance } tf_input_declaration 
     | { attribute_instance } tf_output_declaration 
     | { attribute_instance } tf_inout_declaration 
tf_input_declaration ::= 
       input [ reg ] [ signed ] [ range ] list_of_port_identifiers 
     | input [ task_port_type ] list_of_port_identifiers 
tf_output_declaration ::= 
       output [ reg ] [ signed ] [ range ] list_of_port_identifiers 
     | output [ task_port_type ] list_of_port_identifiers 
tf_inout_declaration ::= 
       inout [ reg ] [ signed ] [ range ] list_of_port_identifiers 
     | inout [ task_port_type ] list_of_port_identifiers 
task_port_type ::= 
       time | real | realtime | integer 
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D.2.8 Block Item Declarations 
  
block_item_declaration ::= 
      { attribute_instance } block_reg_declaration 
    | { attribute_instance } event_declaration 
    | { attribute_instance } integer_declaration 
    | { attribute_instance } local_parameter_declaration 
    | { attribute_instance } parameter_declaration 
    | { attribute_instance } real_declaration 
    | { attribute_instance } realtime_declaration 
    | { attribute_instance } time_declaration 
block_reg_declaration ::= reg [ signed ] [ range ] 
          list_of_block_variable_identifiers ; 
list_of_block_variable_identifiers ::= 
          block_variable_type { , block_variable_type } 
block_variable_type ::= 
      variable_identifier 
    | variable_identifier dimension { dimension } 
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D.3 Primitive Instances 
  
D.3.1 Primitive Instantiation and Instances 
  
gate_instantiation ::= 
      cmos_switchtype [delay3] 
          cmos_switch_instance { , cmos_switch_instance } ; 
    | enable_gatetype [drive_strength] [delay3] 
          enable_gate_instance { , enable_gate_instance } ; 
    | mos_switchtype [delay3] 
          mos_switch_instance { , mos_switch_instance } ; 
    | n_input_gatetype [drive_strength] [delay2] 
          n_input_gate_instance { , n_input_gate_instance } ; 
    | n_output_gatetype [drive_strength] [delay2] 
          n_output_gate_instance { , n_output_gate_instance } ; 
 
    | pass_en_switchtype [delay2] 
          pass_enable_switch_instance { , pass_enable_switch_instance } ; 
    | pass_switchtype 
          pass_switch_instance { , pass_switch_instance } ; 
    | pulldown [pulldown_strength] 
          pull_gate_instance { , pull_gate_instance } ; 
    | pullup [pullup_strength] 
          pull_gate_instance { , pull_gate_instance } ; 
cmos_switch_instance ::= [ name_of_gate_instance ] ( output_terminal , input_terminal ,
         ncontrol_terminal , pcontrol_terminal ) 
enable_gate_instance ::= [ name_of_gate_instance ] ( output_terminal , input_terminal , 
              enable_terminal ) 
mos_switch_instance ::= [ name_of_gate_instance ] ( output_terminal , input_terminal , 
              enable_terminal ) 
n_input_gate_instance ::= [ name_of_gate_instance ] ( output_terminal , input_terminal { 
,  
              input_terminal } ) 
n_output_gate_instance ::= [ name_of_gate_instance ] ( output_terminal { , 
output_terminal }  
              , input_terminal ) 
pass_switch_instance ::= [ name_of_gate_instance ] ( inout_terminal , inout_terminal ) 
pass_enable_switch_instance ::= [ name_of_gate_instance ] ( inout_terminal , 
inout_terminal  
              , enable_terminal ) 
pull_gate_instance ::= [ name_of_gate_instance ] ( output_terminal ) 
name_of_gate_instance ::= gate_instance_identifier [ range ] 
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D.3.2 Primitive Strengths 
  
pulldown_strength ::= 
      ( strength0 , strength1 ) 
    | ( strength1 , strength0 ) 
    | ( strength0 ) 
pullup_strength ::= 
      ( strength0 , strength1 ) 
    | ( strength1 , strength0 ) 
    | ( strength1 ) 
 
D.3.3 Primitive Terminals 
  
enable_terminal ::= expression 
inout_terminal ::= net_lvalue 
input_terminal ::= expression 
ncontrol_terminal ::= expression 
output_terminal ::= net_lvalue 
pcontrol_terminal ::= expression 
 
D.3.4 Primitive Gate and Switch Types 
  
cmos_switchtype ::= cmos | rcmos 
enable_gatetype ::= bufif0 | bufif1 | notif0 | notif1 
mos_switchtype ::= nmos | pmos | rnmos | rpmos 
n_input_gatetype ::= and | nand | or | nor | xor | xnor 
n_output_gatetype ::= buf | not 
pass_en_switchtype ::= tranif0 | tranif1 | rtranif1 | rtranif0 
pass_switchtype ::= tran | rtran 
 
 
  
 
 
D.4 Module and Generated Instantiation 
  
D.4.1 Module Instantiation 
  
module_instantiation ::= 
     module_identifier [ parameter_value_assignment ] 
       module_instance { , module_instance } ; 
parameter_value_assignment ::= # ( list_of_parameter_assignments ) 
list_of_parameter_assignments ::= 
      ordered_parameter_assignment { , ordered_parameter_assignment } | 
      named_parameter_assignment { , named_parameter_assignment } 
ordered_parameter_assignment ::= expression 
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named_parameter_assignment ::= . parameter_identifier ( [ expression ] ) 
module_instance ::= name_of_instance ( [ list_of_port_connections ] ) 
name_of_instance ::= module_instance_identifier [ range ] 
list_of_port_connections ::= 
       ordered_port_connection { , ordered_port_connection } 
     | named_port_connection { , named_port_connection } 
ordered_port_connection ::= { attribute_instance } [ expression ] 
named_port_connection ::= { attribute_instance } .port_identifier ( [ expression ] ) 
 
D.4.2 Generated Instantiation 
  
generated_instantiation ::= generate { generate_item } endgenerate 
generate_item_or_null ::= generate_item | ; 
generate_item ::= 
      generate_conditional_statement 
    | generate_case_statement 
    | generate_loop_statement 
    | generate_block 
    | module_or_generate_item 
generate_conditional_statement ::= 
      if ( constant_expression ) generate_item_or_null [ else generate_item_or_null ] 
generate_case_statement ::= case ( constant_expression ) 
              genvar_case_item { genvar_case_item } endcase 
genvar_case_item ::= constant_expression { , constant_expression } : 
              generate_item_or_null | default [ : ] generate_item_or_null 
generate_loop_statement ::= for ( genvar_assignment ; constant_expression ; 
              genvar_assignment ) 
              begin : generate_block_identifier { generate_item } end 
genvar_assignment ::= genvar_identifier = constant_expression 
generate_block ::= begin [ : generate_block_identifier ] { generate_item } end 
 
 
  
 
D.5 UDP Declaration and Instantiation 
  
D.5.1 UDP Declaration 
  
udp_declaration ::= 
      { attribute_instance } primitive udp_identifier ( udp_port_list ) ; 
      udp_port_declaration { udp_port_declaration } 
      udp_body 
      endprimitive 
    | { attribute_instance } primitive udp_identifier ( udp_declaration_port_list ) ; 
      udp_body 
      endprimitive 
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D.5.2 UDP Ports 
  
udp_port_list ::= output_port_identifier , input_port_identifier { , input_port_identifier }
udp_declaration_port_list ::= 
    udp_output_declaration , udp_input_declaration { , udp_input_declaration } 
udp_port_declaration ::= 
      udp_output_declaration ; 
    | udp_input_declaration ; 
    | udp_reg_declaration ; 
udp_output_declaration ::= 
      { attribute_instance } output port_identifier 
    | { attribute_instance } output reg port_identifier [ = constant_expression ] 
udp_input_declaration ::= { attribute_instance } input list_of_port_identifiers 
udp_reg_declaration ::= { attribute_instance } reg variable_identifier 
 
D.5.3 UDP Body 
  
udp_body ::= combinational_body | sequential_body 
combinational_body ::= table combinational_entry { combinational_entry } endtable 
combinational_entry ::= level_input_list : output_symbol ; 
sequential_body ::= [ udp_initial_statement ] table sequential_entry { sequential_entry } 
              endtable 
udp_initial_statement ::= initial output_port_identifier = init_val ; 
init_val ::= 1'b0 | 1'b1 | 1'bx | 1'bX | 1'B0 | 1'B1 | 1'Bx | 1'BX | 1 | 0 
sequential_entry ::= seq_input_list : current_state : next_state ; 
seq_input_list ::= level_input_list | edge_input_list 
level_input_list ::= level_symbol { level_symbol } 
edge_input_list ::= { level_symbol } edge_indicator { level_symbol } 
edge_indicator ::= ( level_symbol level_symbol ) | edge_symbol 
current_state ::= level_symbol 
next_state ::= output_symbol | - 
output_symbol ::= 0 | 1 | x | X 
level_symbol ::= 0 | 1 | x | X | ? | b | B 
edge_symbol ::= r | R | f | F | p | P | n | N | * 
 
D.5.4 UDP Instantiation 
  
udp_instantiation ::= udp_identifier [ drive_strength ] [ delay2 ] 
                              udp_instance { , udp_instance } ; 
udp_instance ::= [ name_of_udp_instance ] ( output_terminal , input_terminal 
                              { , input_terminal } ) 
name_of_udp_instance ::= udp_instance_identifier [ range ] 
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D.6 Behavioral Statements 
  
D.6.1 Continuous Assignment Statements 
  
continuous_assign ::= assign [ drive_strength ] [ delay3 ] list_of_net_assignments ; 
list_of_net_assignments ::= net_assignment { , net_assignment } 
net_assignment ::= net_lvalue = expression 
 
D.6.2 Procedural Blocks and Assignments 
  
initial_construct ::= initial statement 
always_construct ::= always statement 
blocking_assignment ::= variable_lvalue = [ delay_or_event_control ] expression 
nonblocking_assignment ::= variable_lvalue <= [ delay_or_event_control ] expression
procedural_continuous_assignments ::= 
      assign variable_assignment 
    | deassign variable_lvalue 
    | force variable_assignment 
    | force net_assignment 
    | release variable_lvalue 
    | release net_lvalue 
function_blocking_assignment ::= variable_lvalue = expression 
function_statement_or_null ::= 
      function_statement 
    | { attribute_instance } ; 
 
D.6.3 Parallel and Sequential Blocks 
  
function_seq_block ::= begin [ : block_identifier 
         { block_item_declaration } ] { function_statement } end 
variable_assignment ::= variable_lvalue = expression 
par_block ::= fork [ : block_identifier 
           { block_item_declaration } ] { statement } join 
seq_block ::= begin [ : block_identifier 
         { block_item_declaration } ] { statement } end 
 
D.6.4 Statements 
  
statement ::= 
      { attribute_instance } blocking_assignment ; 
    | { attribute_instance } case_statement 
    | { attribute_instance } conditional_statement 
    | { attribute_instance } disable_statement 
    | { attribute_instance } event_trigger 
    | { attribute_instance } loop_statement 
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    | { attribute_instance } nonblocking_assignment ; 
    | { attribute_instance } par_block 
    | { attribute_instance } procedural_continuous_assignments ; 
    | { attribute_instance } procedural_timing_control_statement 
    | { attribute_instance } seq_block 
    | { attribute_instance } system_task_enable 
    | { attribute_instance } task_enable 
    | { attribute_instance } wait_statement 
statement_or_null ::= 
      statement 
    | { attribute_instance } ; 
function_statement ::= 
      { attribute_instance } function_blocking_assignment ; 
    | { attribute_instance } function_case_statement 
    | { attribute_instance } function_conditional_statement 
    | { attribute_instance } function_loop_statement 
    | { attribute_instance } function_seq_block 
    | { attribute_instance } disable_statement 
    | { attribute_instance } system_task_enable 
 
D.6.5 Timing Control Statements 
  
delay_control ::= 
      # delay_value 
    | # ( mintypmax_expression ) 
delay_or_event_control ::= 
      delay_control 
    | event_control 
    | repeat ( expression ) event_control 
disable_statement ::= 
      disable hierarchical_task_identifier ; 
    | disable hierarchical_block_identifier ; 
event_control ::= 
      @ event_identifier 
    | @ ( event_expression ) 
    | @* 
    | @ (*) 
event_trigger ::= 
      -> hierarchical_event_identifier ; 
event_expression ::= 
      expression 
    | hierarchical_identifier 
    | posedge expression 
    | negedge expression 
    | event_expression or event_expression 
    | event_expression , event_expression 
procedural_timing_control_statement ::= 
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      delay_or_event_control statement_or_null 
wait_statement ::= 
      wait ( expression ) statement_or_null 
 
D.6.6 Conditional Statements 
  
conditional_statement ::= 
      if ( expression ) 
            statement_or_null [ else statement_or_null ] 
    | if_else_if_statement 
if_else_if_statement ::= 
      if ( expression ) statement_or_null 
      { else if ( expression ) statement_or_null } 
      [ else statement_or_null ] 
function_conditional_statement ::= 
      if ( expression ) function_statement_or_null 
          [ else function_statement_or_null ] 
    | function_if_else_if_statement 
function_if_else_if_statement ::= 
      if ( expression ) function_statement_or_null 
      { else if ( expression ) function_statement_or_null } 
      [ else function_statement_or_null ] 
 
D.6.7 Case Statements 
  
case_statement ::= 
      case ( expression ) 
           case_item { case_item } endcase 
    | casez ( expression ) 
           case_item { case_item } endcase 
    | casex ( expression ) 
           case_item { case_item } endcase 
case_item ::= 
      expression { , expression } : statement_or_null 
    | default [ : ] statement_or_null 
function_case_statement ::= 
      case ( expression ) 
          function_case_item { function_case_item } endcase 
    | casez ( expression ) 
          function_case_item { function_case_item } endcase 
    | casex ( expression ) 
          function_case_item { function_case_item } endcase 
function_case_item ::= 
      expression { , expression } : function_statement_or_null 
    | default [ : ] function_statement_or_null 
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D.6.8 Looping Statements 
  
function_loop_statement ::= 
      forever function_statement 
    | repeat ( expression ) function_statement 
    | while ( expression ) function_statement 
 
    | for ( variable_assignment ; expression ; variable_assignment ) 
          function_statement 
loop_statement ::= 
      forever statement 
    | repeat ( expression ) statement 
    | while ( expression ) statement 
    | for ( variable_assignment ; expression ; variable_assignment ) 
            statement 
 
D.6.9 Task Enable Statements 
  
system_task_enable ::= system_task_identifier [ ( expression { , expression } ) ] ; 
task_enable ::= hierarchical_task_identifier [ ( expression { , expression } ) ] ; 
 
 
  
 
 
D.7 Specify Section 
  
D.7.1 Specify Block Declaration 
  
specify_block ::= specify { specify_item } endspecify 
specify_item ::= 
      specparam_declaration 
     |pulsestyle_declaration 
     |showcancelled_declaration 
     |path_declaration 
     |system_timing_check 
pulsestyle_declaration ::= 
      pulsestyle_onevent list_of_path_outputs ; 
    | pulsestyle_ondetect list_of_path_outputs ; 
showcancelled_declaration ::= 
      showcancelled list_of_path_outputs ; 
    | noshowcancelled list_of_path_outputs ; 
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D.7.2 Specify Path Declarations 
  
path_declaration ::= 
      simple_path_declaration ; 
    | edge_sensitive_path_declaration ; 
    | state_dependent_path_declaration ; 
simple_path_declaration ::= 
      parallel_path_description = path_delay_value 
    | full_path_description = path_delay_value 
parallel_path_description ::= 
     ( specify_input_terminal_descriptor [ polarity_operator ] =>  
               specify_output_terminal_descriptor ) 
full_path_description ::= 
     ( list_of_path_inputs [ polarity_operator ] *> list_of_path_outputs ) 
list_of_path_inputs ::= 
       specify_input_terminal_descriptor { , specify_input_terminal_descriptor } 
 
list_of_path_outputs ::= 
       specify_output_terminal_descriptor { , specify_output_terminal_descriptor } 
 
D.7.3 Specify Block Terminals 
  
specify_input_terminal_descriptor ::= 
      input_identifier 
    | input_identifier [ constant_expression ] 
    | input_identifier [ range_expression ] 
specify_output_terminal_descriptor ::= 
      output_identifier 
    | output_identifier [ constant_expression ] 
    | output_identifier [ range_expression ] 
input_identifier ::= input_port_identifier | inout_port_identifier 
output_identifier ::= output_port_identifier | inout_port_identifier 
 
D.7.4 Specify Path Delays 
  
path_delay_value ::= 
     list_of_path_delay_expressions 
    | ( list_of_path_delay_expressions ) 
list_of_path_delay_expressions ::= 
      t_path_delay_expression 
    | trise_path_delay_expression , tfall_path_delay_expression 
    | trise_path_delay_expression , tfall_path_delay_expression , tz_path_delay_expression
    | t01_path_delay_expression , t10_path_delay_expression , t0z_path_delay_expression 
, 
       tz1_path_delay_expression , t1z_path_delay_expression , tz0_path_delay_expression
    | t01_path_delay_expression , t10_path_delay_expression , t0z_path_delay_expression 
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, 
       tz1_path_delay_expression , t1z_path_delay_expression , tz0_path_delay_expression
      t0x_path_delay_expression , tx1_path_delay_expression , t1x_path_delay_expression 
, 
       tx0_path_delay_expression , txz_path_delay_expression , tzx_path_delay_expression
t_path_delay_expression ::= path_delay_expression 
trise_path_delay_expression ::= path_delay_expression 
tfall_path_delay_expression ::= path_delay_expression 
tz_path_delay_expression ::= path_delay_expression 
t01_path_delay_expression ::= path_delay_expression 
t10_path_delay_expression ::= path_delay_expression 
t0z_path_delay_expression ::= path_delay_expression 
tz1_path_delay_expression ::= path_delay_expression 
t1z_path_delay_expression ::= path_delay_expression 
tz0_path_delay_expression ::= path_delay_expression 
t0x_path_delay_expression ::= path_delay_expression 
tx1_path_delay_expression ::= path_delay_expression 
t1x_path_delay_expression ::= path_delay_expression 
tx0_path_delay_expression ::= path_delay_expression 
txz_path_delay_expression ::= path_delay_expression 
tzx_path_delay_expression ::= path_delay_expression 
path_delay_expression ::= constant_mintypmax_expression 
edge_sensitive_path_declaration ::= 
     parallel_edge_sensitive_path_description = path_delay_value 
    | full_edge_sensitive_path_description = path_delay_value 
parallel_edge_sensitive_path_description ::= 
      ( [ edge_identifier ] specify_input_terminal_descriptor => 
          specify_output_terminal_descriptor [ polarity_operator ] : data_source_expression 
) 
full_edge_sensitive_path_description ::= 
       ( [ edge_identifier ] list_of_path_inputs *> 
           list_of_path_outputs [ polarity_operator ] : data_source_expression ) 
data_source_expression ::= expression 
edge_identifier ::= posedge | negedge 
state_dependent_path_declaration ::= 
      if ( module_path_expression ) simple_path_declaration 
    | if ( module_path_expression ) edge_sensitive_path_declaration 
    | ifnone simple_path_declaration 
polarity_operator ::= + | - 
 
D.7.5 System Timing Checks 
  
System timing check commands 
  
system_timing_check ::= 
      $setup_timing_check 
    | $hold _timing_check 
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    | $setuphold_timing_check 
    | $recovery_timing_check 
    | $removal_timing_check 
    | $recrem_timing_check 
    | $skew_timing_check 
    | $timeskew_timing_check 
    | $fullskew_timing_check 
    | $period_timing_check 
    | $width_timing_check 
    | $nochange_timing_check 
$setup_timing_check ::= 
      $setup ( data_event , reference_event , timing_check_limit [ , [ notify_reg ] ] ) ; 
$hold _timing_check ::= 
      $hold ( reference_event , data_event , timing_check_limit [ , [ notify_reg ] ] ) ; 
$setuphold_timing_check ::= 
      $setuphold ( reference_event , data_event , timing_check_limit , timing_check_limit 
                      [ , [ notify_reg ] [ , [ stamptime_condition ] [ , [ checktime_condition ] 
                         [ , [ delayed_reference ] [ , [ delayed_data ] ] ] ] ] ] ) ; 
$recovery_timing_check ::= 
      $recovery ( reference_event , data_event , timing_check_limit [ , [ notify_reg ] ] ) ; 
$removal_timing_check ::= 
      $removal ( reference_event , data_event , timing_check_limit [ , [ notify_reg ] ] ) ; 
$recrem_timing_check ::= 
      $recrem ( reference_event , data_event , timing_check_limit , timing_check_limit 
                     [ , [ notify_reg ] [ , [ stamptime_condition ] [ , [ checktime_condition ] 
                       [ , [ delayed_reference ] [ , [ delayed_data ] ] ] ] ] ] ) ; 
$skew_timing_check ::= 
      $skew ( reference_event , data_event , timing_check_limit [ , [ notify_reg ] ] ) ; 
$timeskew_timing_check ::= 
      $timeskew ( reference_event , data_event , timing_check_limit 
                  [ , [ notify_reg ] [ , [ event_based_flag ] [ , [ remain_active_flag ] ] ] ] ) ; 
$fullskew_timing_check ::= 
      $fullskew ( reference_event , data_event , timing_check_limit , timing_check_limit 
                    [ , [ notify_reg ] [ , [ event_based_flag ] [ , [ remain_active_flag ] ] ] ] ) ; 
$period_timing_check ::= 
      $period ( controlled_reference_event , timing_check_limit [ , [ notify_reg ] ] ) ; 
$width_timing_check ::= 
      $width ( controlled_reference_event , timing_check_limit , 
                   threshold [ , [ notify_reg ] ] ) ; 
$nochange_timing_check ::= 
      $nochange ( reference_event , data_event , start_edge_offset , 
                        end_edge_offset [ , [ notify_reg ] ] ) ; 
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System timing check command arguments 
  
checktime_condition ::= mintypmax_expression 
controlled_reference_event ::= controlled_timing_check_event 
data_event ::= timing_check_event 
delayed_data ::= 
      terminal_identifier 
    | terminal_identifier [ constant_mintypmax_expression ] 
delayed_reference ::= 
      terminal_identifier 
    | terminal_identifier [ constant_mintypmax_expression ] 
end_edge_offset ::= mintypmax_expression 
event_based_flag ::= constant_expression 
notify_reg ::= variable_identifier 
reference_event ::= timing_check_event 
remain_active_flag ::= constant_mintypmax_expression 
stamptime_condition ::= mintypmax_expression 
start_edge_offset ::= mintypmax_expression 
threshold ::=constant_expression 
timing_check_limit ::= expression 
 
System timing check event definitions 
  
timing_check_event ::= 
     [timing_check_event_control] specify_terminal_descriptor [ &&& 
             timing_check_condition ] 
controlled_timing_check_event ::= 
      timing_check_event_control specify_terminal_descriptor [ &&& 
             timing_check_condition ] 
timing_check_event_control ::= 
      posedge 
    | negedge 
    | edge_control_specifier 
specify_terminal_descriptor ::= 
      specify_input_terminal_descriptor 
    | specify_output_terminal_descriptor 
edge_control_specifier ::= edge [ edge_descriptor [ , edge_descriptor ] ] 
edge_descriptor ::= 
      01 
    | 10 
    | z_or_x zero_or_one 
    | zero_or_one z_or_x 
zero_or_one ::= 0 | 1 
z_or_x ::= x | X | z | Z 
timing_check_condition ::= 
      scalar_timing_check_condition 
    | ( scalar_timing_check_condition ) 



 
 
 

 
 

415

scalar_timing_check_condition ::= 
     expression 
    | ~ expression 
    | expression == scalar_constant 
    | expression === scalar_constant 
    | expression != scalar_constant 
    | expression !== scalar_constant 
scalar_constant ::= 
     1'b0 | 1'b1 | 1'B0 | 1'B1 | 'b0 | 'b1 | 'B0 | 'B1 | 1 | 0 
 
 
  
 
 
D.8 Expressions 
  
D.8.1 Concatenations 
  
concatenation ::= { expression { , expression } } 
constant_concatenation ::= { constant_expression { , constant_expression } } 
constant_multiple_concatenation ::= { constant_expression constant_concatenation } 
module_path_concatenation ::= { module_path_expression { , module_path_expression } 
} 
module_path_multiple_concatenation ::= { constant_expression 
module_path_concatenation 
            } 
multiple_concatenation ::= { constant_expression concatenation } 
net_concatenation ::= { net_concatenation_value { , net_concatenation_value } } 
net_concatenation_value ::= 
      hierarchical_net_identifier 
    | hierarchical_net_identifier [ expression ] { [ expression ] } 
    | hierarchical_net_identifier [ expression ] { [ expression ] } [ range_expression ] 
    | hierarchical_net_identifier [ range_expression ] 
    | net_concatenation 
variable_concatenation ::= { variable_concatenation_value { , 
variable_concatenation_value 
              } } 
variable_concatenation_value ::= 
      hierarchical_variable_identifier 
    | hierarchical_variable_identifier [ expression ] { [ expression ] } 
    | hierarchical_variable_identifier [ expression ] { [ expression ] } [ range_expression ] 
    | hierarchical_variable_identifier [ range_expression ] 
    | variable_concatenation 
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D.8.2 Function calls 
  
constant_function_call ::= function_identifier { attribute_instance } 
          ( constant_expression { , constant_expression } ) 
function_call ::= hierarchical_function_identifier{ attribute_instance } 
          ( expression { , expression } ) 
genvar_function_call ::= genvar_function_identifier { attribute_instance } 
          ( constant_expression { , constant_expression } ) 
system_function_call ::= system_function_identifier 
          [ ( expression { , expression } ) ] 
 
D.8.3 Expressions 
  
base_expression ::= expression 
conditional_expression ::= expression1 ? { attribute_instance } expression2 : expression3
constant_base_expression ::= constant_expression 
constant_expression ::= 
      constant_primary 
    | unary_operator { attribute_instance } constant_primary 
    | constant_expression binary_operator { attribute_instance } constant_expression 
   | constant_expression ? { attribute_instance } constant_expression : 
constant_expression 
     | string 
constant_mintypmax_expression ::= 
      constant_expression 
    | constant_expression : constant_expression : constant_expression 
constant_range_expression ::= 
      constant_expression 
    | msb_constant_expression : lsb_constant_expression 
    | constant_base_expression +: width_constant_expression 
    | constant_base_expression -: width_constant_expression 
dimension_constant_expression ::= constant_expression 
expression1 ::= expression 
expression2 ::= expression 
expression3 ::= expression 
expression ::= 
      primary 
    | unary_operator { attribute_instance } primary 
    | expression binary_operator { attribute_instance } expression 
    | conditional_expression 
    | string 
lsb_constant_expression ::= constant_expression 
mintypmax_expression ::= 
      expression 
    | expression : expression : expression 
module_path_conditional_expression ::= module_path_expression ? { attribute_instance 
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} 
         module_path_expression : module_path_expression 
module_path_expression ::= 
      module_path_primary 
    | unary_module_path_operator { attribute_instance } module_path_primary 
 
    | module_path_expression binary_module_path_operator { attribute_instance } 
          module_path_expression 
    | module_path_conditional_expression 
module_path_mintypmax_expression ::= 
         module_path_expression 
    | module_path_expression : module_path_expression : module_path_expression 
msb_constant_expression ::= constant_expression 
range_expression ::= 
      expression 
    | msb_constant_expression : lsb_constant_expression 
    | base_expression +: width_constant_expression 
    | base_expression -: width_constant_expression 
width_constant_expression ::= constant_expression 
 
D.8.4 Primaries 
  
constant_primary ::= 
      constant_concatenation 
    | constant_function_call 
    | ( constant_mintypmax_expression ) 
    | constant_multiple_concatenation 
    | genvar_identifier 
    | number 
    | parameter_identifier 
    | specparam_identifier 
module_path_primary ::= 
      number 
    | identifier 
    | module_path_concatenation 
    | module_path_multiple_concatenation 
    | function_call 
    | system_function_call 
    | constant_function_call 
    | ( module_path_mintypmax_expression ) 
primary ::= 
      number 
    | hierarchical_identifier 
    | hierarchical_identifier [ expression ] { [ expression ] } 
    | hierarchical_identifier [ expression ] { [ expression ] } [ range_expression ] 
    | hierarchical_identifier [ range_expression ] 
    | concatenation 
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    | multiple_concatenation 
    | function_call 
    | system_function_call 
    | constant_function_call 
    | ( mintypmax_expression ) 
 
D.8.5 Expression Left-Side Values 
  
net_lvalue ::= 
      hierarchical_net_identifier 
    | hierarchical_net_identifier [ constant_expression ] { [ constant_expression ] } 
    | hierarchical_net_identifier [ constant_expression ] { [ constant_expression ] } [ 
               constant_range_expression ] 
    | hierarchical_net_identifier [ constant_range_expression ] 
    | net_concatenation 
variable_lvalue ::= 
      hierarchical_variable_identifier 
    | hierarchical_variable_identifier [ expression ] { [ expression ] } 
    | hierarchical_variable_identifier [ expression ] { [ expression ] } [ range_expression ] 
    | hierarchical_variable_identifier [ range_expression ] 
    | variable_concatenation 
 
D.8.6 Operators 
  
unary_operator ::= 
      + | - | ! | ~ | & | ~& | | | ~| | ^ | ~^ | ^~ 
binary_operator ::= 
      + | - | * | / | % | == | != | === | !== | && | || | ** 
    | < | <= | > | >= | & | | | ^ | ^~ | ~^ | >> | << | >>> | <<< 
unary_module_path_operator ::= 
      ! | ~ | & | ~& | | | ~| | ^ | ~^ | ^~ 
binary_module_path_operator ::= 
      == | != | && | || | & | | | ^ | ^~ | ~^ 
 
D.8.7 Numbers 
  
number ::= 
      decimal_number 
    | octal_number 
    | binary_number 
    | hex_number 
    | real_number 
real_number[1] ::= 
      unsigned_number . unsigned_number 
    | unsigned_number [ . unsigned_number ] exp [ sign ] unsigned_number 
exp ::= e | E 
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decimal_number ::= 
      unsigned_number 
    | [ size ] decimal_base unsigned_number 
    | [ size ] decimal_base x_digit { _ } 
    | [ size ] decimal_base z_digit { _ } 
binary_number ::= [ size ] binary_base binary_value 
octal_number ::= [ size ] octal_base octal_value 
hex_number ::= [ size ] hex_base hex_value 
sign ::= + | - 
size ::= non_zero_unsigned_number 
non_zero_unsigned_number[1] ::= non_zero_decimal_digit { _ | decimal_digit} 
unsigned_number[1] ::= decimal_digit { _ | decimal_digit } 
binary_value[1] ::= binary_digit { _ | binary_digit } 
octal_value[1] ::= octal_digit { _ | octal_digit } 
hex_value[1] ::= hex_digit { _ | hex_digit } 
decimal_base[1] ::= '[s|S]d | '[s|S]D 
binary_base[1] ::= '[s|S]b | '[s|S]B 
octal_base[1] ::= '[s|S]o | '[s|S]O 
hex_base[1] ::= '[s|S]h | '[s|S]H 
non_zero_decimal_digit ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
decimal_digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
binary_digit ::= x_digit | z_digit | 0 | 1 
octal_digit ::= x_digit | z_digit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 
hex_digit ::= 
      x_digit | z_digit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
    | a | b | c | d | e | f | A | B | C | D | E | F 
x_digit ::= x | X 
z_digit ::= z | Z | ? 
 
D.8.8 Strings 
  
string ::= " { Any_ASCII_Characters_except_new_line } " 
 

 
 
 
 
D.9 General 
  
D.9.1 Attributes 
  
attribute_instance ::= (* attr_spec { , attr_spec } *) 
attr_spec ::= 
       attr_name = constant_expression 
     | attr_name 
attr_name ::= identifier 
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D.9.2 Comments 
  
comment ::= 
      one_line_comment 
    | block_comment 
one_line_comment ::= // comment_text \n 
block_comment ::= /* comment_text */ 
comment_text ::= { Any_ASCII_character } 
 
D.9.3 Identifiers 
  
arrayed_identifier ::= 
      simple_arrayed_identifier 
    | escaped_arrayed_identifier 
block_identifier ::= identifier 
cell_identifier ::= identifier 
config_identifier ::= identifier 
escaped_arrayed_identifier ::= escaped_identifier [ range ] 
escaped_hierarchical_identifier[4] ::= 
      escaped_hierarchical_branch 
          { .simple_hierarchical_branch | .escaped_hierarchical_branch } 
escaped_identifier ::= \ {Any_ASCII_character_except_white_space} white_space 
event_identifier ::= identifier 
function_identifier ::= identifier 
gate_instance_identifier ::= arrayed_identifier 
generate_block_identifier ::= identifier 
genvar_function_identifier ::= identifier /* Hierarchy disallowed */ 
genvar_identifier ::= identifier 
hierarchical_block_identifier ::= hierarchical_identifier 
hierarchical_event_identifier ::= hierarchical_identifier 
hierarchical_function_identifier ::= hierarchical_identifier 
hierarchical_identifier ::= 
      simple_hierarchical_identifier 
    | escaped_hierarchical_identifier 
hierarchical_net_identifier ::= hierarchical_identifier 
hierarchical_variable_identifier ::= hierarchical_identifier 
hierarchical_task_identifier ::= hierarchical_identifier 
identifier ::= 
      simple_identifier 
    | escaped_identifier 
inout_port_identifier ::= identifier 
input_port_identifier ::= identifier 
instance_identifier ::= identifier 
library_identifier ::= identifier 
memory_identifier ::= identifier 
module_identifier ::= identifier 
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module_instance_identifier ::= arrayed_identifier 
net_identifier ::= identifier 
output_port_identifier ::= identifier 
parameter_identifier ::= identifier 
port_identifier ::= identifier 
real_identifier ::= identifier 
simple_arrayed_identifier ::= simple_identifier [ range ] 
simple_hierarchical_identifier[3] ::= 
      simple_hierarchical_branch [ .escaped_identifier ] 
simple_identifier[2] ::= [ a-zA-Z_ ] { [ a-zA-Z0-9_$ ] } 
specparam_identifier ::= identifier 
system_function_identifier[5] ::= $[ a-zA-Z0-9_$ ]{ [ a-zA-Z0-9_$ ] } 
system_task_identifier[2] ::= $[ a-zA-Z0-9_$ ]{ [ a-zA-Z0-9_$ ] } 
task_identifier ::= identifier 
terminal_identifier ::= identifier 
text_macro_identifier ::= simple_identifier 
topmodule_identifier ::= identifier 
udp_identifier ::= identifier 
udp_instance_identifier ::= arrayed_identifier 
variable_identifier ::= identifier 
 
D.9.4 Identifier Branches 
  
simple_hierarchical_branch[3] ::= 
      simple_identifier [ [ unsigned_number ] ] 
         [ { .simple_identifier [ [ unsigned_number ] ] } ] 
escaped_hierarchical_branch[4] ::= 
      escaped_identifier [ [ unsigned_number ] ] 
         [ { .escaped_identifier [ [ unsigned_number ] ] } ] 
 
D.9.5 Whitespace 
  
white_space ::= space | tab | newline | eof[6] 
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Endnotes  
 

1. Embedded spaces are illegal. 
 

2. A simple_identifier and arrayed_reference shall start with an alpha or underscore 
(_) character, shall have at least one character, and shall not have any spaces. 

 
3. The period (.) in simple_hierarchical_identifier and simple_hierarchical_branch 

shall not be preceded or followed by white_space. 
 

4. The period in escaped_hierarchical_identifier and escaped_hierarchical_branch 
shall be preceded by white_space, but shall not be followed by white_space. 

 
5. The $ character in a system_function_identifier or system_task_identifier shall 

not be followed by white_space. A system_function_identifier or 
system_task_identifier shall not be escaped. 

 
6. End of file. 
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Appendix E. Verilog Tidbits 
 
 
Answers to common Verilog questions are provided in this appendix.
  
 
 
  
 
 
Origins of Verilog HDL 
  
 
Verilog HDL originated around 1983 at Gateway Design Automation, which was then 
located in Acton, Massachusetts. The language that most influenced Verilog HDL was 
HILO-2, which was developed at Brunel University in England under contract to produce 
a test generation system for the British Ministry of Defense. HILO-2 successfully 
combined the gate and register transfer levels of abstraction and supported verification 
simulation, timing analysis, fault simulation, and test generation. 
  
 
Gateway Design Automation was privately held at that time and was headed by Dr. 
Prabhu Goel, the inventor of the PODEM test generation algorithm. Verilog HDL was 
introduced into the EDA market in 1985 as a simulator product. Verilog HDL was 
designed by Phil Moorby, who was later to become the Chief Designer for Verilog-XL 
and the first Corporate Fellow at Cadence Design Systems. Gateway Design Automation 
grew rapidly with the success of Verilog-XL and was finally acquired by Cadence Design 
Systems, San Jose, CA, in 1989. 
  
 
Verilog HDL was opened to the public by Cadence Design Systems in 1990. Open 
Verilog Internation(OVI) was formed to standardize and promote Verilog HDL and 
related design automation products. 
  
 
In 1992, the Board of Directors of OVI began an effort to establish Verilog HDL as an 
IEEE standard. In 1993, the first IEEE Working Group was formed and, after 18 months 
of focused efforts, Verilog became the IEEE Standard 1364-1995. 
  
 
After the standardization process was complete, the 1364 Working Group started looking 
for feedback from 1364 users worldwide so that the standard could be enhanced and 
modified accordingly. This led to a five-year effort to create a much better Verilog 
standard IEEE 1364-2001.  
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Interpreted, Compiled, Native Compiled Simulators 
  
 
Verilog simulators come in three flavors, based on the way they perform the simulation. 
  
 
Interpreted simulators read in the Verilog HDL design, create data structures in memory, 
and run the simulation interpretively. A compile is performed each time the simulation is 
run, but the compile is usually very fast. An example of an interpreted simulator is 
Cadence Verilog-XL simulator. 
  
 
Compiled code simulators read in the Verilog HDL design and convert it to equivalent C 
code (or some other programming language). The C code is then compiled by a standard 
C compiler to get the binary executable. The binary is executed to run the simulation. 
Compile time is usually long for compiled code simulators, but, in general, the execution 
speed is faster compared to interpreted simulators. An example of compiled code 
simulator is Synopsys VCS simulator. 
  
 
Native compiled code simulators read in the Verilog HDL design and convert it directly 
to binary code for a specific machine platform. The compilation is optimized and tuned 
separately for each machine platform. Of course, that means that a native compiled code 
simulator for a Sun workstation will not run on an HP workstation, and vice versa. 
Because of fine tuning, native compiled code simulators can yield significant 
performance benefits. An example of a native compiled code simulator is Cadence 
Verilog-NC simulator. 
  
 

 
 
  
 
Event-Driven Simulation, Oblivious Simulation 
  
 
Verilog simulators typically use an event-driven or an oblivious simulation algorithm. An 
event-driven algorithm processes elements in the design only when signals at the inputs 
of these elements change. Intelligent scheduling is required to process elements. 
Oblivious algorithms process all elements in the design, irrespective of changes in 
signals. Little or no scheduling is required to process elements. 
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Cycle-Based Simulation 
  
 
Cycle-based simulation is useful for synchronous designs where operations happen only 
at active clock edges. Cycle simulators work on a cycle-by-cycle basis. Timing 
information between two clock edges is lost. Significant performance advantages can be 
obtained by using cycle simulation. 
  
 
 
  
 
 
Fault Simulation 
  
 
Fault simulation is used to deliberately insert stuck-at or bridging faults in the reference 
circuit. Then, a test pattern is applied and the outputs of the faulty circuit and the 
reference circuit are compared. The fault is said to be detected if the outputs mismatch. A 
set of test patterns is developed for testing the circuit. 
  
 
 
  
 
 
General Verilog Web sites 
  
 
The following sites provide interesting information related to Verilog HDL. 
  

1. Verilog — http://www.verilog.com 
 

2. Cadence — http://www.cadence.com/ 
 

3. EE Times — http://www.eetimes.com 
 

4. Synopsys — http://www.synopsys.com/ 
 

5. DVCon (Conference for HDL and HVL Users) — http://www.dvcon.org 
 

6. Verification Guild — http://www.janick.bergeron.com/guild/default.htm 
 

7. Deep Chip — http://www.deepchip.com 
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Architectural Modeling Tools 
  

1. For details on System C, see 
http://www.systemc.org 

  
 

 
 
 
 
 
High-Level Verification Languages 
  

1. Information on e is available at http://www.verisity.com 
 

2. Information on Vera is available at http://www.open-vera.com 
 

3. Information on SuperLog is available at http://www.synopsys.com 
 

4. Information on SystemVerilog is available at http://www.accellera.org
  
 
 
  
 
 
Simulation Tools 
  

1. Information on Verilog-XL and Verilog-NC is available at 
http://www.cadence.com 

 
2. Information on VCS is available at http://www.synopsys.com 

  
 
 
  
 
Hardware Acceleration Tools 
  
 
Information on hardware acceleration tools is available at the Web sites of the following 
companies: 
  

1. http://www.cadence.com 
2. http://www.aptix.com 
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3. http://www.mentorg.com 
4. http://www.axiscorp.com 
5. http://www.tharas.com 

  
 
 
  
 
 
In-Circuit Emulation Tools 
  
 
Information on in-circuit emulation tools is available at the Web sites of the following 
companies. 
  

1. http://www.cadence.com 
2. http://www.mentorg.com 

  
 
 
  
 
 
Coverage Tools 
  
 
Information on coverage tools is available at the Web sites of the following companies:
  

1. http://www.verisity.com 
2. http://www.synopsys.com 

  
 

 
 
 
  
 
 
Assertion Checking Tools 
  
 
Information on assertion checking tools is available at the Web sites of the following 
companies: 
  

1. Information on e is available at http://www.verisity.com 
2. Information on Vera is available at http://www.open-vera.com 
3. Information on SystemVerilog is available at http://www.accellera.org 
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4. http://www.0-in.com 
5. http://www.verplex.com 
6. Information on Open Verification Library is available at http://www.accellera.org

  
 
 
  
 
 
Equivalence Checking Tools 
  

1. Information on equivalence checking tools is available at http://www.verplex.com
2. Information on equivalence checking tools is available at 

http://www.synopsys.com 
  
 
 
 
 
 
Formal Verification Tools 
  
 
Information on formal verification tools is available at the Web sites of the following 
companies: 
  

1. http://www.verplex.com 
2. http://www.realintent.com 
3. http://www.synopsys.com 
4. http://www.athdl.com 
5. http://www.0-in.com 

  
 
 
  
 
 

Appendix F. Verilog Examples 
 
This appendix contains the source code for two examples. 

• The first example is a synthesizable model of a FIFO implementation. 
• The second example is a behavioral model of a 256K x 16 DRAM. 

 
These examples are provided to give the reader a flavor of real-life Verilog HDL usage. 
The reader is encouraged to look through the source code to understand coding style and 
the usage of Verilog HDL constructs.  
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F.1 Synthesizable FIFO Model 
  
 
This example describes a synthesizable implementation of a FIFO. The FIFO depth and 
FIFO width in bits can be modified by simply changing the value of two parameters, 
`FWIDTH and `FDEPTH. For this example, the FIFO depth is 4 and the FIFO width is 
32 bits. The input/output ports of the FIFO are shown in Figure F-1. 
  

 
Figure F-1. FIFO Input/Output Ports 

  

 
 
Input ports 
  
 
All ports with a suffix "N" are low-asserted. 
  
Clk — Clock signal 
RstN — Reset signal 
Data_In — 32-bit data into the FIFO 
FInN — Write into FIFO signal 
FClrN — Clear signal to FIFO 
FOutN — Read from FIFO signal 
  
Output ports 
  
F_Data — 32-bit output data from FIFO 
F_FullN — Signal indicating that FIFO is full 
F_EmptyN — Signal indicating that FIFO is empty 
F_LastN — Signal indicating that FIFO has space for one data value 
F_SLastN — Signal indicating that FIFO has space for two data values 
F_FirstN — Signal indicating that there is only one data value in FIFO 
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The Verilog HDL code for the FIFO implementation is shown in Example F-1. 
  
Example F-1 Synthesizable FIFO Model 
  
//////////////////////////////////////////////////////////////////// 
// FileName:  "Fifo.v" 
// Author  :  Venkata Ramana Kalapatapu 
// Company :  Sand Microelectronics Inc. 
//           (now a part of Synopsys, Inc.), 
// Profile :  Sand develops Simulation Models, Synthesizable Cores and 
//           Performance Analysis Tools for Processors, buses and 
//           memory products.  Sand's products include models for 
//           industry-standard components and custom-developed models 
//           for specific simulation environments. 
// 
//////////////////////////////////////////////////////////////////// 
 
 
`define  FWIDTH     32           // Width of the FIFO. 
`define  FDEPTH     4            // Depth of the FIFO. 
`define  FCWIDTH    2            // Counter Width of the FIFO 2 to 
power 
                                 // FCWIDTH = FDEPTH. 
module FIFO(  Clk, 
              RstN, 
              Data_In, 
              FClrN, 
              FInN, 
              FOutN, 
 
              F_Data, 
              F_FullN, 
              F_LastN, 
              F_SLastN, 
              F_FirstN, 
              F_EmptyN 
           ); 
 
 
 
input                       Clk;      // CLK signal. 
input                       RstN;     // Low Asserted Reset signal. 
input [(`FWIDTH-1):0]       Data_In;  // Data into FIFO. 
input                       FInN;     // Write into FIFO Signal. 
input                       FClrN;    // Clear signal to FIFO. 
input                       FOutN;    // Read from FIFO signal. 
 
output [(`FWIDTH-1):0]      F_Data;   // FIFO data out. 
output                      F_FullN;  // FIFO full indicating signal. 
output                      F_EmptyN; // FIFO empty indicating signal. 
output                      F_LastN;  // FIFO Last but one signal. 
output                      F_SLastN; // FIFO SLast but one signal. 
output                      F_FirstN; // Signal indicating only one 
                                      // word in FIFO. 
 
 



 
 
 

 
 

431

reg                F_FullN; 
reg                F_EmptyN; 
reg                F_LastN; 
reg                F_SLastN; 
reg                F_FirstN; 
 
reg    [`FCWIDTH:0]      fcounter; //counter indicates num of data in 
FIFO 
reg    [(`FCWIDTH-1):0]   rd_ptr;      // Current read pointer. 
reg    [(`FCWIDTH-1):0]   wr_ptr;      // Current write pointer. 
wire   [(`FWIDTH-1):0]    FIFODataOut; // Data out from FIFO MemBlk 
wire   [(`FWIDTH-1):0]    FIFODataIn;  // Data into FIFO MemBlk 
 
wire   ReadN  = FOutN; 
wire   WriteN = FInN; 
 
assign F_Data     = FIFODataOut; 
assign FIFODataIn = Data_In; 
 
 
    FIFO_MEM_BLK memblk(.clk(Clk), 
                        .writeN(WriteN), 
                        .rd_addr(rd_ptr), 
                        .wr_addr(wr_ptr), 
                        .data_in(FIFODataIn), 
                        .data_out(FIFODataOut) 
                       ); 
 
 
 
    // Control circuitry for FIFO. If reset or clr signal is asserted, 
    // all the counters are set to 0. If write only the write counter 
    // is incremented else if read only read counter is incremented 
    // else if both, read and write counters are incremented. 
    // fcounter indicates the num of items in the FIFO. Write only 
    // increments the fcounter, read only decrements the counter, and 
    // read && write doesn't change the counter value. 
    always @(posedge Clk or negedge RstN) 
    begin 
 
       if(!RstN) begin 
           fcounter    <= 0; 
           rd_ptr      <= 0; 
           wr_ptr      <= 0; 
       end 
       else begin 
 
           if(!FClrN ) begin 
               fcounter    <= 0; 
               rd_ptr      <= 0; 
               wr_ptr      <= 0; 
           end 
           else begin 
 
               if(!WriteN && F_FullN) 
                   wr_ptr <= wr_ptr + 1; 
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               if(!ReadN && F_EmptyN) 
                   rd_ptr <= rd_ptr + 1; 
 
               if(!WriteN && ReadN && F_FullN) 
                   fcounter <= fcounter + 1; 
 
               else if(WriteN && !ReadN && F_EmptyN) 
                   fcounter <= fcounter - 1; 
          end 
       end 
    end 
 
 
 
    // All the FIFO status signals depends on the value of fcounter. 
    // If the fcounter is equal to fdepth, indicates FIFO is full. 
    // If the fcounter is equal to zero, indicates the FIFO is empty. 
 
 
 
    // F_EmptyN signal indicates FIFO Empty Status. By default it is 
    // asserted, indicating the FIFO is empty. After the First Data is 
    // put into the FIFO the signal is deasserted. 
    always @(posedge Clk or negedge RstN) 
    begin 
 
       if(!RstN) 
          F_EmptyN <= 1'b0; 
 
       else begin 
          if(FClrN==1'b1) begin 
 
             if(F_EmptyN==1'b0 && WriteN==1'b0) 
 
                 F_EmptyN <= 1'b1; 
 
             else if(F_FirstN==1'b0 && ReadN==1'b0 && WriteN==1'b1) 
 
                 F_EmptyN <= 1'b0; 
          end 
          else 
             F_EmptyN <= 1'b0; 
       end 
    end 
 
    // F_FirstN signal indicates that there is only one datum sitting 
    // in the FIFO. When the FIFO is empty and a write to FIFO occurs, 
    // this signal gets asserted. 
    always @(posedge Clk or negedge RstN) 
    begin 
 
       if(!RstN) 
 
          F_FirstN <= 1'b1; 
 
       else begin 
          if(FClrN==1'b1) begin 
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             if((F_EmptyN==1'b0 && WriteN==1'b0) || 
                (fcounter==2 && ReadN==1'b0 && WriteN==1'b1)) 
 
                 F_FirstN <= 1'b0; 
 
             else if (F_FirstN==1'b0 && (WriteN ^ ReadN)) 
                 F_FirstN <= 1'b1; 
          end 
          else begin 
 
             F_FirstN <= 1'b1; 
          end 
       end 
    end 
 
 
    // F_SLastN indicates that there is space for only two data words 
    //in the FIFO. 
    always @(posedge Clk or negedge RstN) 
    begin 
 
       if(!RstN) 
 
          F_SLastN <= 1'b1; 
 
       else begin 
 
          if(FClrN==1'b1) begin 
 
             if( (F_LastN==1'b0 && ReadN==1'b0 && WriteN==1'b1) || 
                 (fcounter == (`FDEPTH-3) && WriteN==1'b0 && 
ReadN==1'b1)) 
 
                 F_SLastN <= 1'b0; 
 
 
             else if(F_SLastN==1'b0 && (ReadN ^ WriteN) ) 
                 F_SLastN <= 1'b1; 
 
          end 
          else 
             F_SLastN <= 1'b1; 
 
       end 
    end 
 
    // F_LastN indicates that there is one space for only one data 
    // word in the FIFO. 
    always @(posedge Clk or negedge RstN) 
    begin 
 
       if(!RstN) 
 
          F_LastN <= 1'b1; 
 
       else begin 
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          if(FClrN==1'b1) begin 
 
             if ((F_FullN==1'b0 && ReadN==1'b0)  || 
                 (fcounter == (`FDEPTH-2) && WriteN==1'b0 && 
ReadN==1'b1)) 
 
                 F_LastN <= 1'b0; 
 
             else if(F_LastN==1'b0 && (ReadN ^ WriteN) ) 
                 F_LastN <= 1'b1; 
          end 
          else 
             F_LastN <= 1'b1; 
       end 
    end 
 
 
    // F_FullN indicates that the FIFO is full. 
    always @(posedge Clk or negedge RstN) 
    begin 
 
       if(!RstN) 
 
           F_FullN <= 1'b1; 
 
       else begin 
           if(FClrN==1'b1)  begin 
 
               if (F_LastN==1'b0 && WriteN==1'b0 && ReadN==1'b1) 
 
                    F_FullN <= 1'b0; 
 
               else if(F_FullN==1'b0 && ReadN==1'b0) 
 
                    F_FullN <= 1'b1; 
           end 
           else 
               F_FullN <= 1'b1; 
 
       end 
    end 
 
endmodule 
 
 
 
/////////////////////////////////////////////////////////////////// 
// 
// 
//   Configurable memory block for fifo. The width of the mem 
//   block is configured via FWIDTH. All the data into fifo is done 
//   synchronous to block. 
// 
//   Author : Venkata Ramana Kalapatapu 
// 
/////////////////////////////////////////////////////////////////// 
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module FIFO_MEM_BLK( clk, 
                     writeN, 
                     wr_addr, 
                     rd_addr, 
                     data_in, 
                     data_out 
                   ); 
 
 
input                    clk;       // input clk. 
input  writeN;  // Write Signal to put data into fifo. 
input  [(`FCWIDTH-1):0]  wr_addr;   // Write Address. 
input  [(`FCWIDTH-1):0]  rd_addr;   // Read Address. 
input  [(`FWIDTH-1):0]   data_in;   // DataIn in to Memory Block 
 
output [(`FWIDTH-1):0]   data_out;  // Data Out from the Memory 
                                    // Block(FIFO) 
 
wire   [(`FWIDTH-1):0] data_out; 
 
reg    [(`FWIDTH-1):0] FIFO[0:(`FDEPTH-1)]; 
 
 
 
assign data_out  = FIFO[rd_addr]; 
 
always @(posedge clk) 
begin 
 
   if(writeN==1'b0) 
      FIFO[wr_addr] <= data_in; 
end 
 
endmodule 
  
 
 
  
 
 
F.2 Behavioral DRAM Model 
  
 
This example describes a behavioral implementation of a 256K x 16 DRAM. The DRAM 
has 256K 16-bit memory locations. The input/output ports of the DRAM are shown in 
Figure F-2. 
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Figure F-2. DRAM Input/Output Ports 
  

 
 
Input ports 
  
All ports with a suffix "N" are low-asserted. 
 
MA — 10-bit memory address 
OE_N — Output enable for reading data 
RAS_N — Row address strobe for asserting row address 
CAS_N — Column address strobe for asserting column address 
LWE_N — Lower write enable to write lower 8 bits of DATA into memory 
UWE_N — Upper write enable to write upper 8 bits of DATA into memory 
  
Inout ports 
  
DATA — 16-bit data as input or output. Write input if LWE_N 
 or UWE_N is asserted. Read output if OE_N is asserted. 
  
The Verilog HDL code for the DRAM implementation is shown in Example F-2. 
  
Example F-2 Behavioral DRAM Model 
  
//////////////////////////////////////////////////////////////////// 
// FileName:  "dram.v" - functional model of a 256K x 16 DRAM 
// Author  :  Venkata Ramana Kalapatapu 
// Company :  Sand Microelectronics Inc.(now a part of Synopsys, Inc.) 
// Profile :  Sand develops Simulation Models, Synthesizable Cores, and
//            Performance Analysis Tools for Processors, buses and 
//            memory products. Sand's products include models for 
//            industry-standard components and custom-developed 
//            models for specific simulation environments. 
// 
//////////////////////////////////////////////////////////////////// 
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module DRAM( DATA, 
             MA, 
             RAS_N, 
             CAS_N, 
             LWE_N, 
             UWE_N, 
             OE_N); 
 
  inout [15:0]   DATA; 
  input [9:0]    MA; 
  input          RAS_N; 
  input          CAS_N; 
  input          LWE_N; 
  input          UWE_N; 
  input          OE_N; 
 
  reg   [15:0]  memblk [0:262143];  // Memory Block. 256K x 16. 
  reg   [9:0]   rowadd;             // RowAddress Upper 10 bits of MA. 
  reg   [7:0]   coladd;             // ColAddress Lower 8 bits of MA. 
  reg   [15:0]  rd_data;            // Read Data. 
  reg   [15:0]  temp_reg; 
 
  reg       hidden_ref; 
  reg       last_lwe; 
  reg       last_uwe; 
  reg       cas_bef_ras_ref; 
  reg       end_cas_bef_ras_ref; 
  reg       last_cas; 
  reg       read; 
  reg       rmw; 
  reg       output_disable_check; 
  integer   page_mode; 
 
  assign #5 DATA=(OE_N===1'b0 && CAS_N===1'b0) ? rd_data : 16'bz; 
 
  parameter infile = "ini_file";   // Input file for preloading the 
Dram. 
 
  initial 
  begin 
     $readmemh(infile, memblk); 
  end 
 
 
  always @(RAS_N) 
  begin 
 
     if(RAS_N == 1'b0 ) begin 
         if(CAS_N == 1'b1 ) begin 
             rowadd = MA; 
         end 
         else 
             hidden_ref = 1'b1; 
     end 
     else 
             hidden_ref = 1'b0; 
  end 
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  always @(CAS_N) 
     #1 last_cas = CAS_N; 
 
 
  always @(CAS_N or LWE_N or UWE_N) 
  begin 
 
     if(RAS_N===1'b0 && CAS_N===1'b0 ) begin 
 
         if(last_cas==1'b1) 
             coladd = MA[7:0]; 
 
         if(LWE_N!==1'b0 && UWE_N!==1'b0)  begin  // Read Cycle. 
 
             rd_data = memblk[{rowadd, coladd}]; 
             $display("READ : address = %b, Data = %b", 
            {rowadd,coladd}, rd_data ); 
         end 
         else if(LWE_N===1'b0 && UWE_N===1'b0) begin 
                                               // Write Cycle both 
bytes. 
             memblk[{rowadd,coladd}] = DATA; 
             $display("WRITE: address = %b, Data = %b", 
            {rowadd,coladd}, DATA ); 
         end 
         else if(LWE_N===1'b0 && UWE_N===1'b1) begin 
                                               // Lower Byte Write 
Cycle. 
 
             temp_reg = memblk[{rowadd, coladd}]; 
             temp_reg[7:0] = DATA[7:0]; 
             memblk[{rowadd,coladd}] = temp_reg; 
         end 
         else if(LWE_N===1'b1 && UWE_N===1'b0) begin 
                                               // Upper Byte Write 
Cycle. 
 
             temp_reg = memblk[{rowadd, coladd}]; 
             temp_reg[15:8] = DATA[15:8]; 
             memblk[{rowadd,coladd}] = temp_reg; 
         end 
     end 
  end 
 
 
  // Refresh. 
  always @(CAS_N or RAS_N) 
  begin 
 
       if(CAS_N==1'b0  && last_cas===1'b1 && RAS_N===1'b1) begin 
           cas_bef_ras_ref = 1'b1; 
       end 
 
       if(CAS_N===1'b1 && RAS_N===1'b1 && cas_bef_ras_ref==1'b1) begin 
           end_cas_bef_ras_ref = 1'b1; 
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           cas_bef_ras_ref = 1'b0; 
       end 
 
       if( (CAS_N===1'b0 && RAS_N===1'b0) && end_cas_bef_ras_ref==1'b1 
) 
           end_cas_bef_ras_ref = 1'b0; 
 
  end 
 
endmodule 
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About the CD-ROM
  
 

• Using the CD-ROM 
• Technical Support 

 
  
 
 
Using the CD-ROM 
  
 
The CD that accompanies this book contains a demonstration version of the SILOS 2001 
Verilog HDL Toolbox for Microsoft Windows (98/98SE/ME/NT/2000/XP). To run it, 
please follow these instructions? 
  

1. Insert CD into CD-ROM drive. 
2. Run D:\SETUP.EXE (where D: is the letter of your CD drive). 
3. Copy D:\VERILOG_BOOK_EXAMPLES directory to hard drive and make the 

folder writable. 
4. See D:\README.TXT for further instructions. 

  
If you are a Unix user, please do the following? 
  

1. Go to http://authors.phptr.com/palnitkar/. 
2. Binary. 
3. Get file VERILOG_BOOK_EXAMPLES.tar. 
4. Get file README.txt. 
5. Tar xvf VERILOG_BOOK_EXAMPLES.tar. 
6. See README.txt for details. 

  
 
  
 
 
Technical Support 
  
Prentice Hall does not offer technical support for the material on the CD-ROM. If you 
have any problems with the Verilog simulator, please visit http://www.simucad.com/. If 
the CD is physically damaged, you may ontain a replacement copy by sending an email 
to disc_exchange@prenhall.com. 
  
 


