Component Data

None of us has the time or space to collect all the literature available on the many different commercially available manufactured components. Even if we did, the task of keeping track of new and obsolete devices would surely be formidable. Fortunately, amateurs tend to use a limited number of component types. This chapter, by Douglas Heacock, AA0MS, provides information on the components most often used by the Amateur Radio experimenter.

COMPONENT VALUES

Throughout this Handbook, composition resistors and smallvalue capacitors are specified in terms of a system of "preferred values." This system allows manufacturers to supply these components in a standard set of values, which, when considered along with component tolerances, satisfy the vast majority of circuit requirements.

The preferred values are based on a roughly logarithmic scale of numbers between 1 and 10 . One decade of these values for three common tolerance ratings is shown in Table 24.1.

The Table represents the two significant digits in a resistor or capacitor value. Multiply these numbers by multiples of ten to get other standard values. For example, $22 \mathrm{pF}, 2.2 \mu \mathrm{~F}, 220 \mu \mathrm{~F}$, and $2200 \mu \mathrm{~F}$ are all standard capacitance values, available in all three tolerances. Standard resistor values include $3.9 \Omega, 390 \Omega$, 39000Ω and $3.9 \mathrm{M} \Omega$ in $\pm 5 \%$ and $\pm 10 \%$ tolerances. All standard resistance values, from less than 1Ω to about $5 \mathrm{M} \Omega$ are based on this table.

Each value is greater than the next smaller value by a multiplier factor that depends on the tolerance. For $\pm 5 \%$ devices, each value is approximately 1.1 times the next lower one. For $\pm 10 \%$ devices, the multiplier is 1.21 , and for $\pm 20 \%$ devices, the multiplier is 1.47 . The resultant values are rounded to make up the series.

Table 24.1
Standard Values for Resistors and Capacitors

$\pm 5 \%$	$\pm 10 \%$	$\pm 20 \%$
1.0	1.0	1.0
1.1		
1.2	1.2	
1.3		
1.5	1.5	1.5
1.6		
1.8	1.8	
2.0		
2.2	2.2	2.2
2.4		
2.7	2.7	
3.0		
3.3	3.3	3.3
3.6		
3.9	3.9	
4.3		
4.7	4.7	4.7
5.1		
5.6	5.6	
6.2		
6.8	6.8	6.8
7.5		
8.2	8.2	
9.1		10.0
10.0	10.0	

Tolerance refers to a range of acceptable values above and below the specified component value. For example, a $4700-\Omega$ resistor rated for $\pm 20 \%$ tolerance can have an actual value anywhere between 3760Ω and 5640Ω. You may always substitute a closer-tolerance device for one with a wider tolerance. For projects in this Handbook, assume a 10% tolerance if none is specified.

COMPONENT MARKINGS

The values, tolerances or types of most small components are typically marked with a color code or an alphanumeric code according to standards agreed upon by component manufacturers. The Electronic Industries Association (EIA) is a US agency that sets standards for electronic components, testing procedures, performance and device markings. The EIA cooperates with other standards agencies such as the International Electrotechnical Commission (IEC), a world-wide standards agency. You can often find published EIA standards in the engineering library of a college or university.

The standard EIA color code is used to identify a variety of electronic components. Most resistors are marked with color bands according to the code, shown in Table 24.2. Some types of capacitors and inductors are also marked using this color code.

Resistor Markings

Carbon-composition, carbon-film, and metal-film resistors are typically manufactured in roughly cylindrical cases with axial leads. They are marked with color bands as shown in Fig 24.1A. The first two bands represent the two significant digits of the component value, the third band represents the multiplier, and the fourth band (if there is one) represents the tolerance. Some units are marked with a fifth band that represents the percentage of resistance change per 1000 hours of operation: brown $=1 \%$; red $=0.1 \%$; orange $=$ 0.01%; and yellow $=0.001 \%$. Precision resistors (EIA Std RS-279, Fig 24.1B) and some mil-spec (MIL STD-1285A) resistors also use five color bands. On precision resistors,

Table 24.2
Resistor-Capacitor Color Codes

Color	Significant Figure	Decimal Multiplier	Tolerance $(\%)$	Voltage Rating
Black	0	1	-	-
Brown	1	10	1^{*}	100
Red	2	100	2^{*}	200
Orange	3	1,000	3^{*}	300
Yellow	4	10,000	4^{*}	400
Green	5	100,000	5^{*}	500
Blue	6	$1,000,000$	6^{*}	600
Violet	7	$10,000,000$	7^{*}	700
Gray	8	$100,000,000$	8^{*}	800
White	9	$1,000,000,000$	9^{*}	900
Gold	-	0.1	5	1000
Silver	-	0.01	10	2000
No color	-	-	20	500

[^0]the first three bands are used for significant figures and the space between the fourth and fifth bands is wider than the others, to identify the tolerance band. On the military resistors, the fifth band indicates reliability information such as failure rate.

For example, if a resistor of the type shown in Fig 24.1A is marked with $\mathrm{A}=$ red; $\mathrm{B}=$ red; $\mathrm{C}=$ orange; $\mathrm{D}=$ no color, the significant figures are 2 and 2 , the multiplier is 1000 , and the tolerance is $\pm 20 \%$. The device is a $22,000-\Omega, \pm 20 \%$ unit.

Some resistors are made with radial leads (Fig 24.1C) and are marked with a color code in a slightly different scheme. For example, a resistor as shown in Fig 24.1C is marked as follows: A (body) = blue; $\mathrm{B}(\mathrm{end})=$ gray; $\mathrm{C}(\operatorname{dot})=$ red; $\mathrm{D}(\mathrm{end})=$ gold. The significant figures are 6 and 8 , the multiplier is 100 , and the tolerance is $\pm 5 \% ; 6800 \Omega$ with $\pm 5 \%$ tolerance.

Resistor Power Ratings

Carbon-composition and metal-film resistors are available in standard power ratings of $1 / 10,1 / 8,1 / 4$, $1 / 2,1$ and 2 W . The ${ }^{1 / 10^{-}}$and $1 / 8$-W sizes are relatively expensive and difficult to purchase in small quantities. They are used only where miniaturization is essential. The $\frac{1}{4}, \frac{1}{2}, 1$, and 2 -W composition resistor packages are drawn to scale in Fig 24.2. Metal-film resistors are typically slightly smaller than carbon-composition units of the same power rating. Film resistors can usually be identified by a glossy enamel coating and an hourglass profile. Carbon-film and metal-film are the most commonly available resistors today, having largely replaced the less-stable carbon-composition resistors.

Capacitor Markings

A variety of systems for capacitor markings are in use. Some use color bands, some use combinations of numbers and letters. Capacitors may be marked with their value, tolerance, temperature characteristics, voltage ratings or some subset of these specifications. Fig 24.3 shows several popular capacitor marking systems.

In addition to the value, ceramic disk capacitors may be marked with an alphanumeric code signifying temperature characteristics. Table $\mathbf{2 4 . 3}$ explains the EIA code for ceramic-disk capacitor temperature characteristics. The code is made up of one character from each column in the table. For example, a capacitor marked Z5U is suitable for use between +10 and $+85^{\circ} \mathrm{C}$, with a maximum change in capacitance of -56% or $+22 \%$.

Capacitors with highly predictable temperature coefficients of capacitance are sometimes used in

Fig 24.2-Typical carbon-composition resistor sizes.

Table 24.3
EIA Temperature Characteristic Codes for Ceramic Disc Capacitors

Minimum temperature	Maximum temperature	Maximum capacitance change over temperature range
X $-55^{\circ} \mathrm{C}$	$2+45^{\circ} \mathrm{C}$	A $\pm 1.0 \%$
Y $-30^{\circ} \mathrm{C}$	$4+65^{\circ} \mathrm{C}$	B $\pm 1.5 \%$
Z $+10^{\circ} \mathrm{C}$	$5+85^{\circ} \mathrm{C}$	C $\pm 2.2 \%$
	$6+105^{\circ} \mathrm{C}$	D $\pm 3.3 \%$
	$7+125^{\circ} \mathrm{C}$	E $\pm 4.7 \%$
		F $\pm 7.5 \%$
		P $\pm 10 \%$
		R $\pm 15 \%$
		S $\pm 22 \%$
		T -33\%, +22\%
		U -56\%, +22\%
		$V-82 \%,+22 \%$

Fig 24.3-Capacitors can be identified by color codes and markings. Shown here are identifying markings found on many common capacitor types.
oscillators that must be frequency stable with temperature. If an application called for a temperature coefficient of $-750 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (N750), a capacitor marked U2J would be suitable. The older industry code for these ratings is being replaced with the EIA code shown in Table 24.4. NP0 (that is, N-P-zero) means "negative, positive, zero;" it is a characteristic often specified for RF circuits requiring temperature stability, such as VFOs. A capacitor of the proper value marked C0G is a suitable replacement for an NP0 unit.

Some capacitors, such as dipped silver-mica units, have a letter designating the capacitance tolerance. These letters are deciphered in Table 24.5.

Surface-Mount Resistor and Capacitor Markings

Many different types of electronic components, both active and passive, are now available in surface-mount packages. These are commonly-known as chip resistors and capacitors. The very small size of these components leaves little space for marking with conventional codes, so brief alphanumeric codes are used to convey the most information in the smallest possible space.

Surface-mount resistors are typically marked with a three- or four-digit value code and a character indicating tolerance. The nominal resistance, expressed in ohms, is identified by three digits for 2% (and greater) tolerance devices. The first two digits represent the significant figures; the last digit specifies the multiplier as the exponent of ten. (It may be easier to remember the multiplier as the number of zeros you must add to the significant figures.) For values less than 100Ω, the letter R is substituted for one of the significant digits and represents a decimal point. Here are some examples:
Resistor Code Value
$101 \quad 10$ and 1 zero $=100 \Omega$
$224 \quad 22$ and 4 zeros $=220,000 \Omega$
1R0 $\quad 1.0$ and no zeros $=1 \Omega$
22R $\quad 22.0$ and no zeros $=22 \Omega$
R10 $\quad 0.1$ and no zeros $=0.1 \Omega$
If the tolerance of the unit is narrower than $\pm 2 \%$, the code used is a four-digit code where the first three digits are the significant figures and the last is the multiplier. The letter R is used in the same way to represent a decimal point. For example, 1001 indicates a $1000-\Omega$ unit, and 22 R0 indicates a $22-\Omega$ unit.

The tolerance rating for a surface-mount resistor is expressed with a single character at the end of the numeric value code, according to Table 24.6.

Surface-mount capacitors are marked with a two-character code consisting of a letter indicating the significant digits (see Table 24.7) and a number indicating the multiplier (see Table 24.8). The code represents the capacitance in picofarads. For example, a chip capacitor marked "A4" would have a capacitance of $10,000 \mathrm{pF}$, or $0.01 \mu \mathrm{~F}$. A unit marked " N 1 " would be a $33-\mathrm{pF}$ capacitor. If there is sufficient space on the device package, a tolerance code may be included (see Fig 24.3D for tolerance

Table 24.7
SMT Capacitor Significant Figures Code

Character	Significant Figures	Character	Significant Figures
A	1.0	T	5.1
B	1.1	U	5.6
C	1.2	W	6.2
D	1.3	6.8	
E	1.5	Y	7.5
F	1.6	8.2	
G	1.8	Z	9.1
H	2.0	b	2.5
J	2.2	3.5	
K	2.4	d	4.0
L	2.7	4.5	
N	3.0	f	5.0
P	3.3	n	6.0
Q	3.6	t	7.0
R	3.9	y	8.0
S	4.3		

codes). Surface-mount capacitors can be very small; you may need a magnifying glass to read the markings.

INDUCTORS AND CORE MATERIALS

Inductors, both fixed and variable, are available in a wide variety of types and packages, and many offer few clues as to their values. Some coils and chokes are marked with the EIA color code shown in Table 24.2. See Fig $\mathbf{2 4 . 4}$ for another marking system for tubular encapsulated RF chokes.

Most powdered-iron toroid cores that we amateurs use are manufactured by Micrometals, who uses paint to identify the material used in the core. The Micrometals color code is part of Table 24.9. Table 24.10 gives the physical characteristics of powdered-iron toroids. Ferrite cores are not typically painted, so identification is more difficult. See Table $\mathbf{2 4 . 1 1}$ for information about ferrite cores.

Table 24.8
SMT Capacitor Multiplier Codes

Fig 24.4-Color coding for tubular encapsulated RF chokes. At A, an example of the coding for an $8.2-\mu \mathrm{H}$ choke is given. At B, the color bands for a $330-\mu \mathrm{H}$ inductor are illustrated. The color code is given in Table 24.2.

TRANSFORMERS

Many transformers, including power transformers, IF transformers and audio transformers, are made to be installed on PC boards, and have terminals designed for that purpose. Some transformers are manufactured with wire leads that are color-coded to identify each connection. When colored wire leads are present, the color codes in Tables 24.12, 24.13 and 24.14 usually apply.

In addition, many miniature IF transformers are tuned with slugs that are color-coded to signify their application. Table 24.15 lists application vs slug color.

SEMICONDUCTORS

Most semiconductor devices are clearly marked with the part number and in some cases, a manufacturer's date code as well. Identification of semiconductors can be difficult, however, when the parts are "house-marked" (marked with codes used by an equipment manufacturer instead of the stan-

24.6 Chapter 24

Table 24.9
Powdered-Iron Toroid Cores: Magnetic Properties

Inductance and Turns Formula

The turns required for a given inductance or inductance for a given number of turns can be calculated from:

$$
N=100 \sqrt{\frac{L}{A_{L}}} \quad L=A_{L}\left(\frac{N^{2}}{10,000}\right)
$$

where $N=$ number of turns; $L=$ desired inductance $(\mu \mathrm{H}) ; A_{L}=$ inductance index ($\mu \mathrm{H}$ per 100 turns). ${ }^{*}$

A_{L} Values

Size	$26^{* *}$	3	15	1	2	7	6	10	12	17	0
T-12	na	60	50	48	20	18	17	12	7.5	7.5	3.0
T-16	145	61	55	44	22	na	19	13	8.0	8.0	3.0
T-20	180	76	65	52	27	24	22	16	10.0	10.0	3.5
T-25	235	100	85	70	34	29	27	19	12.0	12.0	4.5
T-30	325	140	93	85	43	37	36	25	16.0	16.0	6.0
T-37	275	120	90	80	40	32	30	25	15.0	15.0	4.9
T-44	360	180	160	105	52	46	42	33	18.5	18.5	6.5
T-50	320	175	135	100	49	43	40	31	18.0	18.0	6.4
T-68	420	195	180	115	57	52	47	32	21.0	21.0	7.5
T-80	450	180	170	115	55	50	45	32	22.0	22.0	8.5
T-94	590	248	200	160	84	na	70	58	32.0	na	10.6
T-106	900	450	345	325	135	133	116	na	na	na	19.0
T-130	785	350	250	200	110	103	96	na	na	na	15.0
T-157	870	420	360	320	140	na	115	na	na	na	na
T-184	1640	720	na	500	240	na	195	na	na	na	na
T-200	895	425	na	250	120	105	100	na	na	na	na

* The units of A_{L} ($\mu \mathrm{H}$ per 100 turns) are an industry standard; however, to get a correct result use A_{L} only in the formula above.
** Mix-26 is similar to the older Mix-41, but can provide an extended frequency range.

Magnetic Properties Iron Powder Cores

Mix	Color	Material	μ	Temp stability (ppm/ ${ }^{\circ} \mathrm{C}$)	$f(\mathrm{MHz})$	Notes
26	Yellow/white	Hydrogen reduced	75	825	dc - 1	Used for EMI filters and dc chokes
3	Gray	Carbonyl HP	35	370	0.05-0.50	Excellent stability, good Q for lower frequencies
15	Red/white	Carbonyl GS6	25	190	0.10-2	Excellent stability, good Q
1	Blue	Carbonyl C	20	280	0.50-5	Similar to Mix-3, but better stability
2	Red	Carbonyl E	10	95	2-30	High Q material
7	White	Carbonyl TH	9	30	3-35	Similar to Mix-2 and Mix-6, but better temperature stability
6	Yellow	Carbonyl SF	8	35	10-50	Very good Q and temp. stability for $20-50 \mathrm{MHz}$
10	Black	Powdered iron W	6	150	30-100	Good Q and stability for 40-100 MHz
12	Green/white	Synthetic oxide	4	170	50-200	Good Q, moderate temperature stability
17	Blue/yellow	Carbonyl	4	50	40-180	Similar to Mix-12, better temperature stability, Q drops about 10% above $50 \mathrm{MHz}, 20 \%$ above 100 MHz
0	Tan	phenolic	1	0	100-300	Inductance may vary greatly with winding technique

Courtesy of Amidon Assoc and Micrometals

Note: Color codes hold only for cores manufactured by Micrometals, which makes the cores sold by most Amateur Radio distributors.

Table 24.10
Powdered-Iron Toroid Cores: Dimensions
Red E Cores-500 kHz to $30 \mathrm{MHz}(\mu=10)$

No.	$O D$ (in)	$I D$ (in)	H (in)
T-200-2	2.00	1.25	0.55
T-94-2	0.94	0.56	0.31
T-80-2	0.80	0.50	0.25
T-68-2	0.68	0.37	0.19
T-50-2	0.50	0.30	0.19
T-37-2	0.37	0.21	0.12
T-25-2	0.25	0.12	0.09
T-12-2	0.125	0.06	0.05

Black W Cores- 30 MHz to $200 \mathrm{MHz}(\mu=7)$

No.	$O D$ (In)	$I D(I n)$	H (In)
$\mathrm{T}-50-10$	0.50	0.30	0.19
$\mathrm{~T}-37-10$	0.37	0.21	0.12
$\mathrm{~T}-25-10$	0.25	0.12	0.09
$\mathrm{~T}-12-10$	0.125	0.06	0.05

Yellow SF Cores-10 MHz to $90 \mathrm{MHz}(\mu=8)$

No.	$O D$ (In)	$I D($ In $)$	H (In)
T-94-6	0.94	0.56	0.31
T-80-6	0.80	0.50	0.25
T-68-6	0.68	0.37	0.19
T-50-6	0.50	0.30	0.19
T-26-6	0.25	0.12	0.09
T-12-6	0.125	0.06	0.05

Number of Turns vs Wire Size and Core Size

Approximate maximum number of turns-single layer wound-enameled wire.

Wire Size	$T-200$	$T-130$	$T-106$	$T-94$	$T-80$	$T-68$	$T-50$	$T-37$	$T-25$	$T-12$
10	33	20	12	12	10	6	4	1		
12	43	25	16	16	14	9	6	3		
14	54	32	21	21	18	13	8	5	1	
16	69	41	28	28	24	17	13	7	2	
18	88	53	37	37	32	23	18	10	4	1
20	111	67	47	47	41	29	23	14	6	1
22	140	86	60	60	53	38	30	19	9	2
24	177	109	77	77	67	49	39	25	13	4
26	223	137	97	97	85	63	50	33	17	7
28	281	173	123	123	108	80	64	42	23	9
30	355	217	154	154	136	101	81	54	29	13
32	439	272	194	194	171	127	103	68	38	17
34	557	346	247	247	218	162	132	88	49	23
36	683	424	304	304	268	199	162	108	62	30
38	875	544	389	389	344	256	209	140	80	39
40	1103	687	492	492	434	324	264	178	102	51

Actual number of turns may differ from above figures according to winding techniques, especially when using the larger size wires. Chart prepared by Michel J. Gordon, Jr., WB9FHC
Courtesy of Amidon Assoc.

Table 24.11
Ferrite Toroids: A_{L} Chart (mH per 1000, turns) Enameled Wire

Core	$63 / 67-$ Mix	61-Mix	$43-$ Mix	77 (72) Mix	$J(75)$ Mix
Size	$\mu=40$	$\mu=125$	$\mu=850$	$\mu=2000$	$\mu=5000$
FT-23	7.9	24.8	188.0	396	980
FT-37	19.7	55.3	420.0	884	2196
FT-50	22.0	68.0	523.0	1100	2715
FT-82	22.4	73.3	557.0	1170	NA
FT-114	25.4	79.3	603.0	1270	3170

Number turns $=1000 \sqrt{\text { desired } L(m H)} \div A_{L}$ value (above)
Ferrite Magnetic Properties

Property	Unit	63/67-Mix	61-Mix	43-Mix	77 (72) Mix	$J(75)$-Mix
Initial perm (μ_{i})		40	125	850	2000	5000
Maximum perm.		125	450	3000	6000	8000
Saturation flux density @ 10 oer	Gauss	1850	2350	2750	4600	3900
Residual flux density	Gauss	750	1200	1200	1150	1250
Curie temp.	${ }^{\circ} \mathrm{C}$	450	350	130	200	140
Vol. resistivity	ohm/cm	1×10^{8}	1×10^{8}	1×10^{5}	1×10^{2}	5×10^{2}
Resonant circuit frequency	MHz	15-25	0.2-10	0.01-1	0.001-1	0.001-1
Specific gravity		4.7	4.7	4.5	4.8	4.8
Loss	1	110×10^{-6}	32×10^{-6}	120×10^{-6}	4.5×10^{-6}	15×10^{-6}
factor	$\overline{\mu_{\mathrm{i}} \mathrm{Q}}$	@ 25 MHz	@ 2.5 MHz	@1 MHz	@ 0.1 MHz	$@ 0.1 \mathrm{MHz}$
Coercive force	Oer	2.40	1.60	0.30	0.22	0.16
Temp. Coef. of initial perm.	$\begin{aligned} & \% /^{\circ} \mathrm{C} \\ & \left(20-70^{\circ} \mathrm{C}\right) \end{aligned}$	0.10	0.15	1.0	0.60	0.90

Ferrite Toroids-Physical Properties

Core

Size	$O D$	$I D$	Height	A_{e}	I_{e}	V_{e}	A_{S}	A_{W}
FT-23	0.230	0.120	0.060	0.00330	0.529	0.00174	0.1264	0.01121
FT-37	0.375	0.187	0.125	0.01175	0.846	0.00994	0.3860	0.02750
FT-50	0.500	0.281	0.188	0.02060	1.190	0.02450	0.7300	0.06200
FT-82	0.825	0.520	0.250	0.03810	2.070	0.07890	1.7000	0.21200
FT-114	1.142	0.750	0.295	0.05810	2.920	0.16950	2.9200	0.43900

OD-Outer diameter (inches)
ID-Inner diameter (inches)
Hgt -Height (inches)
A_{W}-Total window area (in) ${ }^{2}$
A_{e}-Effective magnetic cross-sectional area (in) ${ }^{2}$
I_{e}-Effective magnetic path length (inches)
V_{e}-Effective magnetic volume (in) ${ }^{3}$
$\mathrm{A}_{\mathrm{S}}-$ Surface area exposed for cooling (in) ${ }^{2}$

Courtesy of Amidon Assoc.

Table 24.12
Power-Transformer Wiring Color Codes

| Non-tapped primary leads: | Black |
| ---: | :--- | :--- |
| Tapped primary leads: | Common: Black |
| | Tap: Black/yellow striped |
| | Finish: Black/red striped |
| High-voltage plate winding: | Red |
| Center tap: | Red/yellow striped |
| Rectifier filament winding: | Yellow |
| Center tap: | Yellow/blue striped |
| Filament winding 1: | Green |
| Center tap: | Green/yellow striped |
| Filament winding 2: | Brown |
| Center tap: | Brown/yellow striped |
| Filament winding 3: | Slate |
| Center tap: | Slate/yellow striped |

Table 24.13
IF Transformer Wiring Color Codes

Plate lead:	Blue
B+ lead:	Red
Grid (or diode) lead:	Green
Grid (or diode) return:	Black
Note: If the secondary of the IF	
transformer is center-tapped, the	
second diode plate lead is green-	
and-black striped, and black is	
used for the center-tap lead.	

Table 24.14
IF Transformer Slug Color Codes

Frequency	Application	Slug color
455 kHz	1st IF	Yellow
	2nd IF	White
	3rd IF	Black
	Osc tuning	Red
10.7 MHz	1st IF	Green
	2nd or 3rd IF	Orange, Brown or Black

Table 24.15

Audio Transformer Wiring Color Codes

Plate lead of primary	Blue
B+ lead (plain or center-tapped)	Red Brown (or blue Plate (start) lead on
center-tapped primaries if polarity is not important) Grid (finish) lead to secondary Green	
Grid return (plain or center tapped)	Black
Grid (start) lead on center	Yellow (or green if polarity tapped secondaries
	not important)

Note: These markings also apply to line-to-grid and tube-to-line transformers.
dard part numbers). In such cases, it is often possible to find the standard equivalent or a suitable replacement by using one of the semiconductor cross-reference directories available from various replacement-parts distributors. If you look up the house number and find the recommended replacement part, you can often find other standard parts that are replaced by that same part.

Diodes

Most diodes are marked with a part number and some means of identifying which lead is the cathode. Some diodes are marked with a color-band code (see Fig 24.5). Important diode parameters include maximum forward current, maximum peak inverse voltage (PIV) and the power-handling capacity.

Transistors

Some important parameters for transistor selection are voltage
and current limits, power-handling capability, beta or gain characteristics and useful frequency range. The case style may also be an issue; some transistors are available in several different case styles.

Integrated Circuits

Integrated circuits (ICs) come in a variety of packages, including transistor-like metal cans, dual and single in-line packages (DIPs and SIPs), flat-packs and surface-mount packages. Most are marked with a part number and a four-digit manufacturer's date code indicating the year (first two digits) and week (last two digits) that the component was made. ICs are frequently house-marked, and the cross-reference directories mentioned above can be helpful in identification and replacement.

Another very useful reference tool for working with ICs is IC Master, a master selection guide that organizes ICs by type, function and certain key parameters. A part number index is included, along with application notes and manufacturer's information for tens of thousands of IC devices. Some of the data from IC Master is also available on computer disks.

IC part numbers usually contain a few digits that identify the circuit die or function and several other letters and/or digits that identify the production process, manufacturer and package. For example, a '4066 IC contains four independent SPST switches. Harris (CD74HC4066, CD4066B and CD4066BE), National (MM74HC4066, CD4066BC and CD4066BM) and Panasonic (MN74HC4066 and MN4066B) all make similar devices (as do many other manufacturers) with slight differences. Among the numbers listed, "CD" (CMOS Digital), "MM" (MOS Monolithic), and "MN" indicate CMOS parts. "74" indicates a commercial quality product (for applications from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$), which is pin compatible with the 74/ 54 TTL families. "HC" means high-speed CMOS family, which is as fast as the LS TTL family. The "B" suffix, as is CD4066B, indicates a buffered output. This is only a small example of the conventions used in IC part numbers. For more information look at data books from the various manufacturers. Base diagrams for many common ICs appear in The ARRL Electronics Data Book.

When choosing ICs that are not exact replacements, several operating needs and performance aspects should be considered. First, the replacement power requirements must be met: Some ICs require 5 V dc, others 12 V and some need both positive and negative supplies. Current requirements vary among the various IC families, so be sure that sufficient current is available from the power supply. If a replacement IC uses much more current than the device it replaces, a heat sink or blower may be needed to keep it cool.

Next consider how the replacement interacts with its neighboring components. Input capacitance and "fanout" are critical factors in digital circuits. Increased input capacitance may overload the driving circuits. Overload slows circuit operation, which may prevent lines from reaching the "high" condition. Fanout tells how many inputs a device can drive. The fanout of a replacement should be equal to, or greater than, that required in the circuit. Operating speed and propagation delay are also significant. Choose a replacement IC that operates at or above the circuit clock speed. (Although increased speed can increase EMI and cause other problems.) Some circuits may not function if the propagation delay varies much from the specified part. Look at the Digital chapter for details of how these operating characteristics relate to circuit performance.

Analog ICs have similar characteristics. Input and output capacities are often defined as how much current an analog IC can "sink" (accept at an input) or "source" (pass to a load). A replacement should be able to source or sink at least as much current as the device it replaces. Analog speed is sometimes listed as bandwidth (as in discrete-component circuits) or slew rate (common in op amps). Each of these quantities should meet or exceed that of the replaced component.

Some ICs are available in different operating temperature ranges. Op amps, for example, are commonly available in three standard ranges:

- Commercial $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Industrial $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Military $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

In some cases, part numbers reflect the temperature ratings. For example, an LM301A op amp is rated for the commercial temperature range; an LM201A op amp for the industrial range and an LM101A for the military range.

When necessary, you can add interface circuits or buffer amplifiers that improve the input and output capabilities of replacement ICs, but auxiliary circuits cannot improve basic device ratings, such as speed or bandwidth.

An excellent source of information on many common ICs is The ARRL Electronics Data Book, which contains detailed data for digital ICs (CMOS and TTL), op amps and other analog ICs.

OTHER SOURCES OF COMPONENT DATA

There are many sources you can consult for detailed component data. Many manufacturers publish data books for the components they make. Many distributors will include data sheets for parts you order if you ask for them. Parts catalogs themselves are often good sources of component data. The following list is representative of some of the data resources available from manufacturers and distributors.
Motorola Small-Signal Transistor Data
Motorola RF Device Data
Motorola Linear and Interface ICs
Signetics: General Purpose/Linear ICs
NTE Technical Manual and Cross Reference
TCE SK Replacement Technical Manual and Cross Reference
National Semiconductor:
Discrete Semiconductor Products Databook
CMOS Logic Databook
Linear Applications Handbook
Linear Application-Specific ICs Databook
Operational Amplifiers Databook

Copper Wire Specifications
Bare and Enamel-Coated Wire

Wire	Diam	Area (CM ${ }^{1}$)	Enamel Wire Coating			Feet		Current C Continuou	arrying s Duty	Capacity	Nearest	
						per	at		Conduit	British		
Size			Turns	Linear	inch ${ }^{2}$		Pound	1000 ft	700 CM	Open		SWG
(AWG)	(Mils)		Single	Heavy	Triple	Bare	$25^{\circ} \mathrm{C}$	per Amp 4	air	bundles	No.	
1	289.3	83694.49				3.948	0.1239	119.564			1	
2	257.6	66357.76				4.978	0.1563	94.797			2	
3	229.4	52624.36				6.277	0.1971	75.178			4	
4	204.3	41738.49				7.918	0.2485	59.626			5	
5	181.9	33087.61				9.98	0.3134	47.268			6	
6	162.0	26244.00				12.59	0.3952	37.491			7	
7	144.3	20822.49				15.87	0.4981	29.746			8	
8	128.5	16512.25				20.01	0.6281	23.589			9	
9	114.4	13087.36				25.24	0.7925	18.696			11	
10	101.9	10383.61				31.82	0.9987	14.834			12	
11	90.7	8226.49				40.16	1.2610	11.752			13	
12	80.8	6528.64				50.61	1.5880	9.327			13	
13	72.0	5184.00				63.73	2.0010	7.406			15	
14	64.1	4108.81	15.2	14.8	14.5	80.39	2.5240	5.870	32	17	15	
15	57.1	3260.41	17.0	16.6	16.2	101.32	3.1810	4.658			16	
16	50.8	2580.64	19.1	18.6	18.1	128	4.0180	3.687	22	13	17	
17	45.3	2052.09	21.4	20.7	20.2	161	5.0540	2.932			18	
18	40.3	1624.09	23.9	23.2	22.5	203.5	6.3860	2.320	16	10	19	
19	35.9	1288.81	26.8	25.9	25.1	256.4	8.0460	1.841			20	
20	32.0	1024.00	29.9	28.9	27.9	322.7	10.1280	1.463	11	7.5	21	
21	28.5	812.25	33.6	32.4	31.3	406.7	12.7700	1.160			22	
22	25.3	640.09	37.6	36.2	34.7	516.3	16.2000	0.914		5	22	
23	22.6	510.76	42.0	40.3	38.6	646.8	20.3000	0.730			24	
24	20.1	404.01	46.9	45.0	42.9	817.7	25.6700	0.577			24	
25	17.9	320.41	52.6	50.3	47.8	1031	32.3700	0.458			26	
26	15.9	252.81	58.8	56.2	53.2	1307	41.0200	0.361			27	
27	14.2	201.64	65.8	62.5	59.2	1639	51.4400	0.288			28	
28	12.6	158.76	73.5	69.4	65.8	2081	65.3100	0.227			29	
29	11.3	127.69	82.0	76.9	72.5	2587	81.2100	0.182			31	
30	10.0	100.00	91.7	86.2	80.6	3306	103.7100	0.143			33	
31	8.9	79.21	103.1	95.2		4170	130.9000	0.113			34	
32	8.0	64.00	113.6	105.3		5163	162.0000	0.091			35	
33	7.1	50.41	128.2	117.6		6553	205.7000	0.072			36	
34	6.3	39.69	142.9	133.3		8326	261.3000	0.057			37	
35	5.6	31.36	161.3	149.3		10537	330.7000	0.045			38	
36	5.0	25.00	178.6	166.7		13212	414.8000	0.036			39	
37	4.5	20.25	200.0	181.8		16319	512.1000	0.029			40	
38	4.0	16.00	222.2	204.1		20644	648.2000	0.023				
39	3.5	12.25	256.4	232.6		26969	846.6000	0.018				
40	3.1	9.61	285.7	263.2		34364	1079.2000	0.014				
41	2.8	7.84	322.6	294.1		42123	1323.0000	0.011				
42	2.5	6.25	357.1	333.3		52854	1659.0000	0.009				
43	2.2	4.84	400.0	370.4		68259	2143.0000	0.007				
44	2.0	4.00	454.5	400.0		82645	2593.0000	0.006				
45	1.8	3.10	526.3	465.1		106600	3348.0000	0.004				
46	1.6	2.46	588.2	512.8		134000	4207.0000	0.004				

Continued on next page.

Teflon Coated, Stranded Wire

Continued from previous page.
(As supplied by Belden Wire and Cable)

Turns per Linear inch ${ }^{2}$
 UL Style No.

Size	Strands 5	1180	1213	1371
16	19×29	11.2		
18	19×30	12.7		
20	7×28	14.7	17.2	
20	19×32	14.7	17.2	
22	19×34	16.7	20.0	23.8
22	7×30	16.7	20.0	23.8
24	19×36	18.5	22.7	27.8
24	7×32		22.7	27.8
26	7×34		25.6	32.3
28	7×36		28.6	37.0
30	7×38		31.3	41.7
32	7×40			47.6

Notes

${ }^{1}$ A circular mil (CM) is a unit of area equal to that of a one-mil-diameter circle ($\pi / 4$ square mils). The CM area of a wire is the square of the mil diameter.
2 Figures given are approximate only; insulation thickness varies with manufacturer.
${ }^{3}$ Maximum wire temperature of $212^{\circ} \mathrm{F}\left(100^{\circ} \mathrm{C}\right)$ with a maximum ambient temperature of $13^{\circ} \mathrm{F}\left(57^{\circ} \mathrm{C}\right)$ as specified by the manufacturer. The National Electrical Code or local building codes may differ.
4700 CM per ampere is a satisfactory design figure for small transformers, but values from 500 to 1000 CM are commonly used. The National Electrical Code or local building codes may differ.
5 Stranded wire construction is given as "count" \times "strand size" (AWG).

Color Code for Hookup Wire

Wire Color	Type of Circuit Grounds, grounded elements and returns
Black	Heaters or filaments, off ground
Brown	Power Supply B plus
Red	Ocreen grids and base 2 of transistors
Orange	Cathodes and transistor emitters
Yellow	Control grids, diode plates, and base 1 Green of transistors
Blue	Plates and transistor collectors
Violet	Power supply, minus leads
Gray	Ac power line leads White
Bias supply, B or C minus, AGC	

Note: Wires with tracers are coded in the same manner as solid-color wires, allowing additional circuit identification over solid-color wiring. The body of the wire is white and the color band spirals around the wire lead. When more than one color band is used, the widest band represents the first color.

Aluminum Alloy Characteristics

Common Alloy Numbers

Type Characteristic

2024 Good formability, high strength
5052 Excellent surface finish, excellent corrosion resistance, normally not heat treatable for high strength
6061 Good machinability, good weldability, can be brittle at high tempers
7075 Good formability, high strength

General Uses

Type Uses
2024-T3 Chassis boxes, antennas, anything that will be bent or flexed repeatedly
7075-T3
6061-T6 Mounting plates, welded assemblies or machined parts

Common Tempers

Type Characteristics
T0 Special soft condition
T3 Hard
T6 Very hard, possibly brittle
TXXX Three digit tempers-usually specialized high-strength heat treatments, similar to T6

Crystal Holders

Note: Solder Seal, Cold Weld, and Resistance Weld sealing methods are commonly available. All dimensions are in inches

HC6/U

HC17/U *

* Note: HC17/U pin spacing and diameter is equivalent
to the older FT-243 (32 pF) holder.

PIN	CONNECTION
1	No Connection
2	Crystal
3	Ground
4	Crystal

HC 35 (TO-5)

HC 40 (TL-90)

HC13/U

HC18/U

HC33/U

HC 47 (TL-31)

* Note: HC17/U pin spacing and diameter is equivalent to the older FT-243 (32 pF) holder.

Miniature Lamp Guide

** Bulbs are described by a letter indicating shape and a number that is an approximation of diameter expressed in eighths of an inch. For example $S-8$ is " S " shape, 8 eighths or 1 inch in diameter.

BULB STYLES

Type	Butb	Base	\checkmark	A	Life ${ }^{\text {+ }}$	Type	Buib	Base	V	A	Life ${ }^{\dagger}$
397	T-13/4	GMD	10.00	0.040	5 K	1892	T-31/4	BMN	14.40	0.120	1K
398	T-13/4	GMD	6.30	0.200	5 K	1893	T-31/4	BMN	14.00	0.330	7.5 K
399	T-13/4	SMD	28.00	0.040	7K	1895	G-41/2	BMN	14.00	0.270	2K
502	G-41/2	SMN	5.10	0.150	100	2102	T-13/4	WT	18.00	0.040	10K
555	T-31/4	W	6.30	0.250	3K	2107	T-13/4	WT	10.00	0.040	5 K
656	$\mathrm{T}-31 / 4$	W	28.00	0.060	2.5K	2158	T-13/4	WT	3.00	0.015	10K
680AS15	T-1	WT	5.00	0.060	60 K	2162	T-13/4	WT	14.00	0.100	10K
682AS15	T-1	FSMD	5.00	0.060	60 K	2169	T-13/4	WT	2.50	0.350	20 K
$683 A S 15$	T-1	WT	5.00	0.060	25K	2180	T-13/4	WT	6.30	0.040	20K
685AS15	T-1	FSMD	5.00	0.060	25K	2181	T-13/4	WT	6.30	0.200	20K
715AS15	T-1	WT	5.00	0.115	40K	2182	T-13/4	WT	14.00	0.080	40K
715AS25	T-1	WT	5.00	0.115	40K	2187	T-13/4	WT	28.00	0.040	7K
718AS25	T-1	FSMD	5.00	0.115	40K	2304	T-13/4	BP	3.00	0.300	1.5 K
755	T-31/4	BMN	6.30	0.150	20K	2307	T-13/4	BP	6.30	0.200	5K
756	T-31/4	BMN	14.00	0.080	15K	2314	T-13/4	BP	28.00	0.050	1 K
757	T-31/4	BMN	28.00	0.080	7.5K	2316	T-13/4	BP	18.00	0.040	10K
1034	S-8	BIDC	14.00	0.590	5K	2324	T-13/4	BP	28.00	0.040	4 K
1073	S-8	BSC	12.80	1.800	200	2335	T-13/4	BP	14.00	0.080	15K
1130	S-8	BDC	6.40	2.630	200	2337	T-13/4	BP	6.30	0.200	20K
1133	RP-11	BSC	6.20	3.910	200	2342	T-13/4	BP	28.00	0.040	25K
1141	S-8	BSC	12.80	1.440	1 K	3149	T-13/4	BP	5.00	0.060	5 K
1143	RP-11	BSC	12.50	1.980	400	6803AS25	T-3/4	WT	5.00	0.060	60 K
1184	RP-11	BDC	5.50	6.250	100	6833AS15	T-3/4	WT	5.00	0.060	25K
1251	G-6	BSC	28.00	0.230	2K	6838	T-1	WT	28.00	0.024	4K
1445	G-31/2	BMN	14.40	0.130	2K	6839	T-1	FSMD	28.00	0.024	4 K
1487	T-31/4	SMN	14.00	0.200	3K	7001	T-13/4	BP	24.00	0.050	2 K
1488	T-31/4	BMN	14.00	0.150	200	7003	T-13/4	BP	24.00	0.050	2 K
1490	T-31/4	BMN	3.20	0.160	3 K	7153AS15	T-3/4	WT	5.00	0.115	40 K
1493	5-8	BDC	6.50	2.750	100	7265	T-1	BP	5.00	0.060	5K
1619	S-8	BSC	6.70	1.900	500	7327	T-13/4	BP	28.00	0.040	4K
1630	S-8	PFDC	6.50	2.750	100	7328	T-13/4	BP	6.00	0.200	1 K
1691	S-8	BSC	28.00	0.610	1 K	7330	T.13/4	BP	14.00	0.080	1.5K
1705	T-13/4	WT	14.00	0.080	1.5 K	7344	T-13/4	BP	10.00	0.014	50K
1728	T-13/4	WT	1.35	0.060	3K	7349	T-13/4	BP	6.30	0.200	5K
1730	T-13/4	WT	6.00	0.040	20 K	7361	T-13/4	BP	5.00	0.060	25K
1738	T-13/4	WT	2.70	0.060	6K	7362	T.13/4	BP	5.00	0.115	40 K
1762	T-13/4	WT	28.00	0.040	4K	7367	T-13/4	BP	10.00	0.040	5K
1764	T-13/4	WT	28.00	0.040	4 K	7370	T.13/4	BP	18.00	0.040	10K
1767	T-13/4	SMD	2.50	0.200	500	7371	T-13/4	BP	12.00	0.040	10K
1768	T-13/4	SMD	6.00	0.200	1 K	7373	T-13/4	BP	14.00	0.100	10K
1775	T-13/4	SMD	6.30	0.075	tK	7374	T-13/4	BP	28.00	0.040	10K
1813	T-31/4	BMN	14.40	0.100	1 K	7375	T-13/4	BP	3.00	0.015	10K
1815	T-31/4	BMN	14.00	0.200	3 K	7376	T-13/4	BP	28.00	0.065	10K
1816	T-31/4	BMN	13.00	0.330	1 K	7377	T-13/4	BP	6.30	0.075	1K
1818	T-31/4	BMN	24.00	0.170	250	7380	T-13/4	BP	6.30	0.040	30K
1819	T-31/4	BMN	28.00	0.040	2.5 K	7381	T-13/4	BP	6.30	0.200	20K
1820	T-31/4	BMN	28.00	0.100	1 K	7382	T-13/4	BP	14.00	0.080	15K
1821	T-31/4	SMN	28.00	0.170	500	7387	T-13/4	BP	28.00	0.040	7 K
1822	T-31/4	BMN	36.00	0.100	$1 \mathrm{1K}$	7410	T-13/4	BP	14.00	0.080	15K
1828	T-31/4	BMN	37.50	0.050	3 K	7839	T-1	BP	28.00	0.025	4 K
1829	T-31/4	BMN	28.00	0.070	1 K	7876	T-13/4	BP	28.00	0.060	25K
1835	T-31/4	BMN	55.00	0.050	5 K	7931	T-13/4	BP	1.35	0.060	3 K
1847	T-31/4	BMN	6.30	0.150	5K	7945	T-13/4	BP	6.00	0.040	20K
1850	T-31/4	BMN	5.00	0.090	1.5K	7968	T-13/4	BP	2.50	0.200	500
1864	T-31/4	BMN	28.00	0.170	1.5K	8099	T-1	BP	18.00	0.020	16K
1866	T-31/4	BMN	6.30	0.250	5K	8362	T-13/4	SMD	14.00	0.080	15K
1869	T-13/4	WT	10.00	0.014	50 K	8369	T-13/4	SMD	28.00	0.065	10K
1891	T-31/4	BMN	14.00	0.240	500						

STANDARD LINE-VOLTAGE LAMPS

Type	V	W	Bulb	Base
10C7DC	115-125	10	C-7	BDC
356	120, 125	3	S-6	SC
6S6	$\begin{aligned} & 30,48, \\ & 115,120, \\ & 125,130, \\ & 135,145, \end{aligned}$	6	S-6	SC
6S6/R	115-125	6	S-6 (red)	SC
6S6W	115-125	6	$\mathrm{S}-6$ (white)	SC
6T41/2	120, 130	6	T-41/2	SC
$7 \mathrm{C7}$	115-125	7	C-7	SC
7C7/W	115-125	7	C-7 (white)	SC
$10 \mathrm{C7}$	115-125	10	C-7	SC
10 S 6	120	10	S-6	SC
1056/10	$\begin{aligned} & 220,230, \\ & 250 \end{aligned}$	10	S-6	SC
6S6DC	$\begin{aligned} & 30,120 \\ & 125,145 \end{aligned}$	6	S-6	BDC
10S6/10DC	230, 250	10	S-6	BDC
40 S 11 N	115-125	40	S-11	S
120MB	120	3	T-21/2	BMN
120MB/6	120	6	T-21/2	BMN
120PSB	120	3	T-2	SL
120PS	120	3	T-2	WT
120PS/6	120	6	T-21/2	WT

Metal-Oxide Varistor (MOV) Transient Suppressors

Listed by voltage.

			Maximum		Maximum		Maximum
			Applied	Maximum	Peak	Maximum	Varistor
	ECG/NTE $\dagger \dagger$		Voltage	Energy	Current	Power	Voltage
Type No.	no.	$V a c_{\text {RMS }}$	V ac ${ }_{\text {Peak }}$	(Joules)	(A)	(W)	(V)
V180ZA1	1V115	115	163	1.5	500	0.2	285
V180ZA10	2V115	115	163	10.0	2000	0.45	290
V130PA10A		130	184	10.0	4000	8.0	350
V130PA20A		130	184	20.0	4000	15.0	350
V130LA1	1V130	130	184	1.0	400	0.24	360
V130LA2	1V130	130	184	2.0	400	0.24	360
V130LA10A	2V130	130	184	10.0	2000	0.5	340
V130LA20A	524V13	130	184	20.0	4000	0.85	340
V150PA10A		150	212	10.0	4000	8.0	410
V150PA20A		150	212	20.0	4000	15.0	410
V150LA1	1V150	150	212	1.0	400	0.24	420
V150LA2	1V150	150	212	2.0	400	0.24	420
V150LA10A	524V15	150	212	10.0	2000	0.5	390
V150LA20A	524 V 15	150	212	20.0	4000	0.85	390
V250PA10A		250	354	10.0	4000	0.85	670
V250PA20A		250	354	20.0	4000	7.0	670
V250PA40A		250	354	40.0	4000	13.0	670
V250LA2	1V250	250	354	2.0	400	0.28	690
V250LA4	1V250	250	354	4.0	400	0.28	690
V250LA15A	2V250	250	354	15.0	2000	0.6	640
V250LA20A	2V250	250	354	20.0	2000	0.6	640
V250LA40A	524 V 25	250	354	40.0	4000	0.9	640

$\dagger \dagger$ ECG and NTE numbers for these parts are identical, except for the prefix. Add the "ECG" or "NTE" prefix to the numbers shown for the complete part number.

Voltage-Variable Capacitance Diodes ${ }^{\dagger}$

Listed numerically by device									
	CT					CT			
	Nominal					Nominal			
	Capacitance					Capacitance			
	pF	Capacitance	Q			pF	Capacitance	Q	
	$\pm 10 \%$ @	Ratio	© 4.0 V			$\pm 10 \%$ (6)	Ratio	@ 4.0 V	
	$V_{R}=4.0 \mathrm{~V}$	4.60 V	50 MHz	Case		$V_{R}=4.0 \mathrm{~V}$	4-60 V	50 MHz	Case
Device	$f=1.0 \mathrm{MHz}$	Min.	Min.	Style	Device	$t=1.0 \mathrm{MHz}$	Min.	Min.	Style
1N5441A	6.8	2.5	450		1N5471A	39	2.9	450	
1N5442A	8.2	2.5	450		1N5472A	47	2.9	400	
1N5443A	10	2.6	400	DO-7	1N5473A	56	2.9	300	DO-7
1N5444A	12	2.6	400		1N5474A	68	2.9	250	
1N5445A	15	2.6	450		1N5475A	82	2.9	225	
1N5446A	18	2.6	350		1N5476A	100	2.9	200	
1N5447A	20	2.6	350		MV2101	6.8	2.5	450	
1N5448A	22	2.6	350	DO.7	MV2102	8.2	2.5	450	
1N5449A	27	2.6	350		MV2103	10	2.0	400	TO. 92
1N5450A	33	2.6	350		MV2104	12	2.5	400	
1N5451A	39	2.6	300		MV2105	15	2.5	400	
1N5452A	47	2.6	250		MV2106	18	2.5	350	
1N5453A	56	2.6	200	DO-7	MV2107	22	2.5	350	
1N5454A	68	2.7	175		MV2108	27	2.5	300	TO-92
1N5455A	82	2.7	175		MV2109	33	2.5	200	
1N5456A	100	2.7	175		MV2110	39	2.5	150	
1N5461A	6.8	2.7	600		MV2111	47	2.5	150	
1N5462A	8.2	2.8	600		MV2112	56	2.6	150	
1N5463A	10	2.8	550	DO-7	MV2113	68	2.6	150	TO-92
1N5464A	12	2.8	550		MV2114	82	2.6	100	
1N5465A	15	2.8	550		MV2115	100	2.6	100	
1N5466A	18	2.8	500						
1N5467A	20	2.9	500						
1N5468A	22	2.9	500	DO. 7					
1N5469A	27	2.9	500						
1N5470A	33	2.9	500						
\dagger For package shape, size and pin-connection information, see manufacturers' data sheets. Many retail									
supplie facture	s offer dat s and reta	sheets to rs.	uyers f	e of	est. Da	books are	available f	m man	man

Zener Diodes

Continued from previous page.

	-	page.		(Watts)				
Volts	0.25	0.4	0.5	1.0	1.5	5.0	10.0	50.0
14.0	1N4108	1N5534	$\begin{aligned} & \text { 1N5244B } \\ & \text { TN5860 } \end{aligned}$			1N5351,B	1N2978, B	$\begin{aligned} & \text { 1N2812,B } \\ & \text { 1N3313,B } \end{aligned}$
15.0	1N4109	1N965,B 1N5535	$\begin{aligned} & \text { 1N965,B } \\ & \text { 1N5245,B, 1N5861, } \\ & \text { 1N6004 } \end{aligned}$	$\begin{aligned} & \text { 1N3024,B } \\ & \text { iN4744A } \end{aligned}$	$\begin{aligned} & \text { 1N3793 } \\ & \text { 1N5929 } \end{aligned}$	1N5352,B	1N2979,A,B	$\begin{aligned} & \text { 1N2813,A,B } \\ & \text { 1N3314,B } \end{aligned}$
16.0	1N4110	$\begin{aligned} & \text { 1N966,B } \\ & \text { 1N5536 } \end{aligned}$	1N966,B, 1N5246,B 1N5862, 1N6005	$\begin{aligned} & \text { iN3025,B } \\ & \text { iN4745,A } \end{aligned}$	$\begin{aligned} & \text { TN3794 } \\ & \text { TN5930 } \end{aligned}$	1N5353, B	1N2980, B	TN2814,B - N3315, B
17.0	1N4111	1N5537	$\begin{aligned} & \text { 1N5247,B } \\ & \text { 1N5863 } \end{aligned}$			1N5354,B	1N2981B	$\begin{aligned} & \text { IN2815,B } \\ & 1 \mathrm{~N} 3316, \mathrm{~B} \end{aligned}$
18.0	1N4112	$\begin{aligned} & \text { 1N967,B } \\ & \text { 1N5538 } \end{aligned}$	$\begin{aligned} & \text { 1N967,B } \\ & \text { 1N5248,B } \\ & \text { 1N5864, 1N6006 } \end{aligned}$	$\begin{aligned} & \text { 1N3026,B } \\ & \text { 1N4746,A } \end{aligned}$	$\begin{aligned} & \text { 1N3795 } \\ & \text { 1N5931 } \end{aligned}$	1N5355, 8	1N2982,B	$\begin{aligned} & \text { 1N2816,B } \\ & \text { 1N3317,B } \end{aligned}$
19.0	1N4113	1N5539	$\begin{aligned} & \text { 1N5249,B } \\ & \text { 1N5865 } \end{aligned}$			1N5356,B	1N2983,B	$\begin{aligned} & \text { 1N2817,B } \\ & \text { 1N3318,B } \end{aligned}$
20.0	1N4114	$\begin{aligned} & \text { 1N968.B } \\ & \text { 1N5540 } \end{aligned}$	$\begin{aligned} & \text { 1N968.B } \\ & \text { 1N5250,B } \\ & \text { IN5866, IN6007 } \end{aligned}$	$\begin{aligned} & \text { 1N3027,B } \\ & \text { iN4747,A } \end{aligned}$	$\begin{aligned} & \text { 1N3796 } \\ & \text { iN5932,A,B } \end{aligned}$	1N5357,B	1N2984,B	$\begin{aligned} & \text { 1N2818,B } \\ & \text { 1N3319,B } \end{aligned}$
22.0	1N4115	1N959; ${ }^{\text {B }}$ 1N5541	$\begin{aligned} & \text { 1N969,B } \\ & \text { 1N5241,B } \\ & \text { 1N5867, 1N6008 } \end{aligned}$	$\begin{aligned} & \text { 1N3028,B } \\ & \text { 1N4748,A } \end{aligned}$	$\begin{aligned} & \text { 1N3797 } \\ & \text { 1N5933 } \end{aligned}$	1N5358, B	1N2985, B	$\begin{aligned} & \text { 1N2819,B } \\ & \text { 1N3320,A,B } \end{aligned}$
24.0	1N4116	$\begin{aligned} & \text { 1N5542 } \\ & \text { 1N9701B } \end{aligned}$	1N970, B 1N5252,B, 1 N586 1N6009	$\begin{aligned} & \text { 1N3029,B } \\ & \text { 1N4749,A } \end{aligned}$	$\begin{aligned} & \text { 1N3798 } \\ & \text { 1N5934 } \end{aligned}$	1N5359,B	1N2986, B	$\begin{aligned} & \text { 1N2820,B } \\ & \text { 1N321,B } \end{aligned}$
25.0	1N4117	1N5543	$\begin{aligned} & \text { 1N5253,B } \\ & \text { 1N5869 } \end{aligned}$			1N5360, B	1N2987B	$\begin{aligned} & \text { 1N2821,B } \\ & \text { 1N322, } \end{aligned}$
27.0	1N4118	1N971,B	$\begin{aligned} & \text { 1N971 } \\ & \text { 1N5254,B, 1N5870, } \\ & \text { 1N6010 } \end{aligned}$	$\begin{aligned} & \text { 1N3030,B } \\ & \text { 1N4750,A } \end{aligned}$	1N3799 1N5935	1N5361,B	1N2988,B	$\begin{aligned} & \text { 1N2822B } \\ & \text { 1N3323,B } \end{aligned}$
28.0	1N4119	1N5544	$\begin{aligned} & \text { 1N5255,B } \\ & \text { 1N5871 } \end{aligned}$			1N5362,B		
30.0	1N4120	$\begin{aligned} & \text { 1N972,B } \\ & \text { 1N5545 } \end{aligned}$	$\begin{aligned} & \text { 1N972,B } \\ & \text { 1N5256,B, 1N5872, } \\ & \text { 1N6011 } \end{aligned}$	$\begin{aligned} & \text { 1N3031,B } \\ & \text { 1N4751,A } \end{aligned}$	$\begin{aligned} & \text { 1N3800 } \\ & \text { 1N5936 } \end{aligned}$	1N5363,B	1N2989,B	$\begin{aligned} & \text { 1N2823,B } \\ & \text { 1N3324,B } \end{aligned}$
33.0	1N4121	1N973, B 1N5546	$\begin{aligned} & \text { 1N973,B } \\ & \text { 1N5257,B } \\ & \text { 1N5873 } \\ & \text { 1N6012 } \end{aligned}$	$\begin{aligned} & \text { iN3032,B } \\ & \text { iN4752,A } \end{aligned}$	$\begin{aligned} & \text { 1N3801 } \\ & \text { 1N5937 } \end{aligned}$	1N5364, B	1N2990,A, B	$\begin{aligned} & \text { 1N2824,B } \\ & \text { 1N } 3325, B \end{aligned}$
36.0	1N4122	1N974,B	$\begin{aligned} & \text { 1N974,B } \\ & \text { 1N5258;B } \\ & \text { 1N5874, iN6013 } \end{aligned}$	$\begin{aligned} & \text { 1N3033,B } \\ & \text { 1N4753,A } \end{aligned}$	$\begin{aligned} & \text { 1N3802 } \\ & \text { 1N5938 } \end{aligned}$	1N5365,B	1N2991,B	$\begin{aligned} & \text { 1N2825,B } \\ & \text { 1N3326,B } \end{aligned}$
39.0	1N4123	1N975,B	1N975,B, 1 N5259,B 1N5875, 1 N6014	$\begin{aligned} & \text { 1N3034,B } \\ & \text { 1N4754,A } \end{aligned}$	$\begin{aligned} & \text { 1N3803 } \\ & \text { 1N5939 } \end{aligned}$	1N5366,B	1N2992,B	$\begin{aligned} & \text { 1N2826,B } \\ & \text { 1N3327,B } \end{aligned}$
43.0	1N4124	1N976,B	1N976, B 1N5260,B, 1N5876, 1N6015	$\begin{aligned} & \text { 1N3035, B } \\ & \text { 1N4755,A } \end{aligned}$	$\begin{aligned} & \text { 1N3804 } \\ & \text { 1N5940 } \end{aligned}$	1N5367, B	1N2993,A,B	$\begin{aligned} & \text { 1N } 2827, B \\ & 1 \mathrm{~N} 3328, B \end{aligned}$
45.0							1N2994B	$\begin{aligned} & \text { 1N2828B } \\ & \text { 1N3329B } \end{aligned}$
47.0	1N4125	1N977,B	$\begin{aligned} & \text { 1N977,B, 1N5261,B } \\ & \text { 1N5877, 1N6016 } \end{aligned}$	$\begin{aligned} & \text { 1N3036,B } \\ & \text { 1N4756,A } \end{aligned}$	$\begin{aligned} & \text { 1N3805 } \\ & \text { 1N5941 } \end{aligned}$	1N5368, ${ }^{\text {B }}$	1N2996, B	$\begin{aligned} & \text { 1N2829,B } \\ & \text { 1N3330,B } \end{aligned}$
50.0								$\begin{aligned} & \text { 1N2830B } \\ & \text { 1N3331B } \end{aligned}$
51.0	1N4126	1N978,B	1N978,B, 1N5262,A,B 1N5878, 1N6017	$\begin{aligned} & \text { 1N3037,B } \\ & \text { 1N4757,A } \end{aligned}$	$\begin{aligned} & \text { 1N3806 } \\ & \text { 1N5942 } \end{aligned}$	1N5369, B	1N2997, B	$\begin{aligned} & \text { 1N2831,B } \\ & \text { 1N3332,B } \end{aligned}$
52.0							1N2998B	1N3333
56.0	1N4127	1N979,B	$\begin{aligned} & \text { 1N979 } \\ & \text { 1N5263,B } \\ & \text { 1N6018 } \end{aligned}$	$\begin{aligned} & \text { 1N3038, B } \\ & \text { 1N4758,A } \end{aligned}$	$\begin{aligned} & \text { TN3807 } \\ & \text { iN5943 } \end{aligned}$	1N5370,B	1N2999, B	$\begin{aligned} & \text { 1N2822,B } \\ & \text { 1N3334,B } \end{aligned}$
60.0	1N4128		1N5264,A,B			1N5371, B		
62.0	1N4129	1N980,B	$\begin{aligned} & \text { 1N980 } \\ & \text { 1N5265,A,B } \\ & \text { 1N6019 } \end{aligned}$	$\begin{aligned} & \text { 1N3039,B } \\ & \text { 1N4759,A } \end{aligned}$	$\begin{aligned} & \text { TN3808 } \\ & \text { iN5944 } \end{aligned}$	1N5372,B	1N3000, B	$\begin{aligned} & \text { 1N2833,B } \\ & \text { 1N3335,B } \end{aligned}$
68.0	1N4130	1N981,B	$\begin{aligned} & \text { 1N981,B } \\ & \text { iN5266,A,B } \\ & \text { iN6020 } \end{aligned}$	$\begin{aligned} & \text { 1N3040,A,B } \\ & \text { 1N4760,A } \end{aligned}$	$\begin{aligned} & \text { 1N3809 } \\ & \text { 1N5945 } \end{aligned}$	1N5373,B	1N3001,B	$\begin{aligned} & \text { 1N2834,B } \\ & \text { 1N3336,B } \end{aligned}$
75.0	1N4131	1N982,B	$\begin{aligned} & \text { 1N982 } \\ & \text { 1N5267,A,B } \\ & \text { 1N6021 } \end{aligned}$	$\begin{aligned} & \text { 1N3041,B } \\ & \text { 1N4761,A } \end{aligned}$	$\begin{aligned} & \text { 1N3810 } \\ & \text { 1N5946 } \end{aligned}$	1N5374, B	1N3002,B	$\begin{aligned} & \text { 1N2835,B } \\ & \text { 1N3337,B } \end{aligned}$
82.0	1N4132	1N983, B	$\begin{aligned} & \text { 1N983 } \\ & \text { 1N526B,A,B } \\ & \text { 1N6022 } \end{aligned}$	$\begin{aligned} & \text { 1N3042,B } \\ & \text { 1N4762,A } \end{aligned}$	$\begin{aligned} & \text { 1N3811 } \\ & \text { 1N5947 } \end{aligned}$	1N5375, B	1N3003,B	$\begin{aligned} & \text { 1N2836,B } \\ & \text { 1N3338,B } \end{aligned}$
87.0 910	1N4133		1N5269,B			1N5376,B		
91.0	1N4134	1N984, B	1N984 1 N5270,B 1N6023	$\begin{aligned} & \text { 1N3043,B } \\ & \text { 1N4763,A } \end{aligned}$	1N3812 1N5948	1N5377,B	1N3004,B	$\begin{aligned} & \text { 1N2837,B } \\ & \text { 1N3339,B } \end{aligned}$
100.0	1N4135	1N985	1 N985, B 1N5271,B 1N6024	$\begin{aligned} & \text { 1N3044,A,B } \\ & \text { 1N } 4764, A \end{aligned}$	$\begin{aligned} & \text { 1N3813 } \\ & \text { 1N5949 } \end{aligned}$	1N5378, B	1N3005, B	$\begin{aligned} & \text { 1N2838,B } \\ & \text { 1N3340,B } \end{aligned}$
105.0							1N3006B	$\begin{aligned} & \text { 1N2839,B } \\ & \text { 1N3341,B } \end{aligned}$
110.0		1N986	1N986 1N5272,B 1N6025	$\begin{aligned} & \text { 1N3045,B } \\ & \text { IM110ZS } 10 \end{aligned}$	$\begin{aligned} & \text { 1N3814 } \\ & \text { 1N5950 } \end{aligned}$	1N5379,B	1N3007A, B	$\begin{aligned} & \text { 1N2840,B } \\ & \text { 1N3342,B } \end{aligned}$

Zener Diodes

Continued from previous page.

Semiconductor Diode Specifications ${ }^{\dagger}$

Listed numerically by device

Device	Type	Material	Peak Inverse Voltage, PIV (V)	Average Rectified Current Forward (Reverse) $I_{O}(A)\left(I_{R}(A)\right)$	Peak Surge Current, I ISSM $1 s @ 25^{\circ} \mathrm{C}$ (A)	Average Forward Voltage, V_{F} (V)
1N34	Signal	Ge	60	$8.5 \mathrm{~m}(15.0 \mu)$		1.0
1N34A	Signal	Ge	60	$5.0 \mathrm{~m}(30.0 \mu)$		1.0
1N67A	Signal	Ge	100	$4.0 \mathrm{~m}(5.0 \mu)$		1.0
1N191	Signal	Ge	90	5.0 m		1.0
1N270	Signal	Ge	80	0.2 (100 μ)		1.0
1N914	Fast Switch	Si	75	75.0 m (25.0 n)	0.5	1.0
1N1183	RFR	Si	50	40 (5 m)	800	1.1
1N1184	RFR	Si	100	40 (5 m)	800	1.1
1N2071	RFR	Si	600	0.75 (10.0 μ)		0.6
1N3666	Signal	Ge	80	$0.2(25.0 \mu)$		1.0
1N4001	RFR	Si	50	1.0 (0.03 m)		1.1
1N4002	RFR	Si	100	1.0 (0.03 m)		1.1
1N4003	RFR	Si	200	1.0 (0.03 m)		1.1
1N4004	RFR	Si	400	1.0 (0.03 m)		1.1
1N4005	RFR	Si	600	1.0 (0.03 m)		1.1
1N4006	RFR	Si	800	1.0 (0.03 m)		1.1
1N4007	RFR	Si	1000	1.0 (0.03 m)		1.1
1N4148	Signal	Si	75	10.0 m (25.0 n)		1.0
1N4149	Signal	Si	75	$10.0 \mathrm{~m}(25.0 \mathrm{n})$		1.0
1N4152	Fast Switch	Si	40	20.0 m (0.05 μ)		0.8
1N4445	Signal	Si	100	0.1 (50.0 n)		1.0
1N5400	RFR	Si	50	3.0 (500 μ)	200	
1N5401	RFR	Si	100	3.0 (500 μ)	200	
1N5402	RFR	Si	200	3.0 (500 μ)	200	
1N5403	RFR	Si	300	3.0 (500 μ)	200	
1N5404	RFR	Si	400	$3.0(500 \mu)$	200	
1N5405	RFR	Si	500	3.0 (500 μ)	200	
1N5406	RFR	Si	600	3.0 (500 μ)	200	
1N5408	RFR	Si	1000	3.0 (500 μ)	200	
1N5711	Schottky	Si	70	1 m (200 n)	15 m	0.41 @ 1 mA
1 N5767	Signal	Si		$0.1(1.0 \mu)$		1.0
1N5817	Schottky	Si	20	1.0 (1 m)	25	0.75
1N5819	Schottky	Si	40	1.0 (1 m)	25	0.9
1N5821	Schottky	Si	30	3.0		
ECG5863	RFR	Si	600	6	150	0.9
1N6263	Schottky	Si	70	15 m	50 m	0.41 @ 1 mA
5082-2835	Schottky	Si	8	1 m (100 n)	10 m	0.34 @ 1 mA

$\mathrm{Si}=$ Silicon; $\mathrm{Ge}=$ Germanium; RFR = rectifier, fast recovery.
\dagger For package shape, size and pin-connection information see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.

European Semiconductor Numbering System (PRO Electron Code)

Japanese Semiconductor Nomenclature

All transistors manufactured in Japan are registered with the Electronic Industries Association of Japan (EIAJ). In addition, the Japan industrial Standard JIS-C-7012 provides type numbers for transistors and thyristors.
Each transistor type number contains five elements.

$\frac{i}{2}$	$\frac{i i}{S}$	$\frac{\text { iii }}{\mathrm{C}}$	$\frac{\mathrm{iv}}{82 \mathrm{D}}$	$\frac{v}{\mathrm{~A}}$

Figure Letter Letter Figure Letter
i) Kind of device, indicating number of effective electrical connections minus one.
ii) For a semiconductor registered with the EIAJ this letter is always an S.
iii) This letter designates polarity and application, as follows:

Letter Polarity and Application
A PNP transistor, high frequency
B PNP transistor, low frequency
C NPN transistor, high frequency
D NPN transistor, low frequency
E $\quad \mathrm{P}$-gate thyristor
G $\quad \mathrm{N}$-gate thyristor
H $\quad \mathrm{N}$-base unijunction transistor
$J \quad$ P-channel FET
K \quad-channel FET
M Bi-directional triode thyristor
iv) These figures designate the order of application for EIAJ registration, starting with 11.
v) This letter indicates the level of improvement. An improvement device may be used in place of a previous-generation device, but not necessarily the other way around.

Suggested Small-Signal FETs

Device No.	Type	Max Diss (mW)	Max $V_{D S}$ $(V)^{3}$	$\begin{aligned} & V G S_{(o f f)} \\ & (V)^{3} \end{aligned}$	Min gfs ($\mu \mathrm{S}$)	Input C (pF)	Max ID $(m A)^{1}$	$f_{\text {max }}$ (MHz)	Noise Figure (typ)	Case	Base	Mfr ${ }^{2}$	Applications
2N4416	N-JFET	300	30	-6	4500	4	-15	450	400 MHz 4 dB	TO-72	1	S, M	VHF/UHF amp, mix, osc
2N5484	N-JFET	310	25	-3	2500	5	30	200	200 MHz 4 dB	TO-92	2	M	VHF/UHF amp, mix, osc
2N5485	N-JFET	310	25	-4	3500	5	30	400	400 MHz 4 dB	TO-92	2	S	VHF/UHF amp, mix, osc
2N5486	N-JFET	360	25	-2	5500	5	15	400	400 MHz 4 dB	TO-92	2	M	VHF/UHF amp, mix, osc
$\begin{aligned} & \text { 3N200 } \\ & \text { NTE222 } \\ & \text { SK3065 } \end{aligned}$	N -dual-gate MOSFET	330	20	-6	10,000	4-8.5	50	500	400 MHz 4.5 dB	TO-72	3	R	VHF/UHF amp, mix, OSC
$\begin{aligned} & \text { 3N202 } \\ & \text { NTE454 } \\ & \text { SK3991 } \end{aligned}$	N -dual-gate MOSFET	360	25	-5	8000	6	50	200	200 MHz 4.5 dB	TO-72	3	S	VHF amp, mixer
MPF102 ECG451 SK9164	N-JFET	310	25	-8	2000	4.5	20	200	400 MHz 4 dB	TO-92	2	N, M	HF/VHF amp, mix, osc
MPF106 2N5484	N-JFET	310	25	-6	2500	5	30	400	200 MHz 4 dB	TO-92	2	N, M	HF/VHF/UHF amp, mix, osc
$\begin{aligned} & 40673 \\ & \text { NTE222 } \\ & \text { SK3050 } \end{aligned}$	N -dual-gate MOSFET	330	20	-4	12,000	6	50	400	200 MHz 6 dB	TO-72	3	R	HF/VHF/UHF amp, mix, OSC
U304	P-JFET	350	-30	+10		27	-50	-	-	TO-18	4	S	analog switch chopper
U310	N-JFET	$\begin{aligned} & 500 \\ & 300 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	-6	10,000	2.5	60	450	450 MHz 3.2 dB	TO-52	5	S	common-gate VHF/UHF amp,
U350	N-JFET Quad	1W	25	-6	9000	5	60	100	100 MHz 7 dB	TO-99	6	S	matched JFET doubly bal mix
U431	N-JFET Dual	300	25	-6	10,000	5	30	100	$\frac{10 \mathrm{nV}}{\sqrt{\mathrm{~Hz}}}$	TO-99	7	S	matched JFET cascode amp and bal mix
2N5670	N-JFET	350	25	8	3000	7	20	400	$\begin{aligned} & 100 \mathrm{MHz} \\ & 2.5 \mathrm{~dB} \end{aligned}$	TO-92	2	M	VHF/UHF osc, mix, front-end amp
2N5668	N-JFET	350	25	4	1500	7	5	400	100 MHz 2.5 dB	TO-92	2	M	VHF/UHF osc, mix, front-end amp
2N5669	N-JFET	350	25	6	2000	7	10	400	100 MHz 2.5 dB	TO-92	2	M	VHF/UHF osc, mix, front-end amp
J308	N-JFET	350	25	6.5	8000	7.5	60	1000	100 MHz 1.5 dB	TO-92	2	M	VHF/UHF osc, mix, front-end amp
J309	N-JFET	350	25	4	10,000	7.5	30	1000	100 MHz 1.5 dB	TO-92	2	M	VHF/UHF osc, mix, front-end amp
J310	N-JFET	350	25	6.5	8000	7.5	60	1000	100 MHz 1.5 dB	TO-92	2	M	VHF/UHF osc, mix, front-end amp
NE32684A	HJ-FET	165	2.0	-0.8	45,000	-	30	20 GHz	12 GHz 0.5 dB	84A		NE	Low-noise amp

Notes:
$125^{\circ} \mathrm{C}$.
${ }^{2} \mathrm{M}=$ Motorola; $\mathrm{N}=$ National Semiconductor; NE=NEC; R = RCA; S = Siliconix.
3 For package shape, size and pin-connection information, see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

24.26

Low-Noise Transistors

Device	$N F(d B)$	$F(M H z)$	$f_{T}(G H z)$	$I_{C}(m A)$	Gain $(d B)$	$F(M H z)$	$V_{(B R) C E O}(V)$	$I_{C}(m A)$	$P_{T}(m W)$	Case
MRF904	1.5	450	4	15	16	450	15	30	200	TO-206AF
MRF571	1.5	1000	8	50	12	1000	10	70	1000	Macro-X
MRF2369	1.5	1000	6	40	12	1000	15	70	750	Macro-X
MPS911	1.7	500	7	30	16.5	500	12	40	625	TO-226AA
MRF581A	1.8	500	5	75	15.5	500	15	200	2500	Macro-X
BFR91	1.9	500	5	30	16	500	12	35	180	Macro-T
BFR96	2	500	4.5	50	14.5	500	15	100	500	Macro-T
MPS571	2	500	6	50	14	500	10	80	625	TO-226AA
MRF581	2	500	5	75	15.5	500	18	200	2500	Macro-X
MRF901	2	1000	4.5	15	12	1000	15	30	375	Macro-X
MRF941	2.1	2000	8	15	12.5	2000	10	15	400	Macro-X
MRF951	2.1	2000	7.5	30	12.5	2000	10	100	1000	Macro-X
BFR900	2.4	500	5	14	18	500	15	30	180	Macro-T
MPS901	2.4	900	4.5	15	12	900	15	30	300	TO-226AA
MRF1001A	2.5	300	3	90	13.5	300	20	200	3000	TO-205AD
2N5031	2.5	450	1.6	5	14	450	10	20	200	TO-206AF
MRF4239A	2.5	500	5	90	14	500	12	400	3000	TO-205AD
BFW92A	2.7	500	4.5	10	16	500	15	35	180	Macro-T
MRF521*	2.8	1000	4.2	-50	11	1000	-10	-70	750	Macro-X
2N5109	3	200	1.5	50	11	216	20	400	2500	TO-205AD
2N4957*	3	450	1.6	-2	12	450	-30	-30	200	TO-206AF
MM4049*	3	500	5	-20	11.5	500	-10	-30	200	TO-206AF
2N5943	3.4	200	1.5	50	11.4	200	30	400	3500	TO-205AD
MRF586	4	500	1.5	90	9	500	17	200	2500	TO-205AD
2N5179	4.5	200	1.4	10	15	200	12	50	200	TO-206AF
2N2857	4.5	450	1.6	8	12.5	450	15	40	200	TO-206AF
2N6304	4.5	450	1.8	10	15	450	15	50	200	TO-206AF
MPS536*	4.5	500	5	-20	4.5	500	-10	-30	625	TO-226AA
MRF536*	4.5	1000	6	-20	10	1000	-10	-30	300	Macro-X

* denotes a PNP device

Complimentary devices
NPN PNP
2N2857 2N4957
MRF904 MM4049
MRF571 MRF521
For package shape, size and pin-connection information, see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.

VHF and UHF Class-A Transistors

The devices listed below are recommended for class-A linear applications, and include medium-power parts that are useful at frequencies from 100 MHz to 2 GHz .

Device	Frequency (MHz)	$V_{C C}(V)$	$P_{O} @ 1 d B$ Compression (W)	Small Signal Gain/Frequency (MHz)	Bias Point ($V_{d c} / A$)	Package
MRA1000-3.5L	1000	19	3.5	10/1000	19/0.6	145A-09/1
MRA1000-7L	1000	19	7	9/1000	19/1.2	145A-09/1
MRA1000-14L	1000	19	14	8/1000	19/2.4	145A-09/1
MRF1029	1000	25	1.5	8/1000	25/0.2	244-04/1
MRF1030	1000	25	3	7.5/1000	25/0.4	244-04/1
MRF1031	1000	25	4.5	7/1000	25/0.6	244-04/1
MRF1032	1000	25	6	6.5/1000	25/0.85	244-04/1
MRF3094	2000	20	0.5	10.5/2000	20/0.12	328A-03/1
MRF3104	2000	20	0.5	10.5/2000	20/0.12	305A-01/1
MRF3095	2000	20	0.8	9/2000	20/0.12	328A-03/1
MRF3105	2000	20	0.8	9/2000	20/0.12	305A-01/1
MRF3096	2000	20	1.6	9/2000	20/0.24	328A-03/1
MRF3106	2000	20	1.6	9/2000	20/0.24	305A-01/1
MRF2000-5L	2000	20	5	7/2000	19/0.6	360A-01/1

For package shape, size and pin-connection information, see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.

Monolithic Amplifiers (50 Ω)

Mini-Circuits Labs MMICs

Device	Freq Range (MHz)	$\begin{aligned} & \text { Gain }(d B) \text { at } \\ & 1000 \mathrm{MHz} \end{aligned}$	Output Level 1 dB Comp (dBm)	$N F(d B)$	$I_{\text {max }}(m A)$	$P_{\text {max }}(m W)$
MAR-1	dc - 1000	15.5	+1.5	5.5	40	200
MAR-2	dc - 2000	12.0	+4.5	6.5	60	325
MAR-3	dc - 2000	12.0	+10.0	6.0	70	400
MAR-4	dc - 1000	8.0	+12.5	6.5	85	500
MAR-6	dc - 2000	16.0	+2.0	3.0	50	200
MAR-7	dc - 2000	12.5	+5.5	5.0	60	275
MAR-8	dc - 1000	22.5	+12.5	3.3	65	500
RAM-1	dc - 1000	15.5	+1.5	5.5	40	200
RAM-2	dc - 2000	11.8	+4.5	6.5	60	325
RAM-3	dc - 2000	12.0	+10.0	6.0	80	425
RAM-4	dc - 1000	8.0	+12.5	6.5	100	540
RAM-6	dc - 2000	16.0	+2.0	2.8	50	200
RAM-7	dc - 2000	12.5	+5.5	4.5	60	275
RAM-8	dc - 1000	23.0	+12.5	3.0	65	420
MAV-1	dc - 1000	15.0	+1.5	5.5	40	200
MAV-2	dc - 1500	11.0	+4.5	6.5	60	325
MAV-3	dc - 1500	11.0	+10.0	6.0	70	400
MAV-4	dc - 1000	7.5	+11.5	7.0	85	500
MAV-11	dc - 1000	10.5	+17.5	3.6	80	550

RAM-x, case VV105; MAR-x, case BBB123; MAV-x, case AF190†

Avantek MMICs

	Freq Range $(M H z)$	Typical Gain $(d B)$	Output Level 1 $d B$ Comp $(d B m)$	$N F(d B)$	$I_{\max }(m A)$	$P_{\max }(m W)$
Device	(m)					
MSA-01xx	$d c-1300$	18.5	1.5	5.5	40	200
MSA-02xx	$d c-2800$	12.5	4.5	6.5	60	325
MSA-03xx	$d c-2800$	12.5	10	6.0	80	425
MSA-04xx	$d c-4000$	8.3	11.5	7.0	85	500
MSA-05xx	$d c-2800$	7.0	19.0	6.5	135	1.5
MSA-06xx	$d c-800$	19.5	2.0	3.0	50	200
MSA-07xx	$d c-2500$	13.0	5.5	4.5	50	175
MSA-08xx	$d c-6000$	32.5	12.5	3.0	65	500
MSA-09xx	$d c-6000$	7.2	10.5	6.2	65	500
MSA-11xx	$50-1300$	12.0	17.5	3.6	80	550

Each listing represents a series of devices in different cases. Performance varies somewhat with the case (for example, the frequency range is often 30% less for a plastic package, as compared to that with a ceramic package). \dagger

Continued on next page.

Monolithic Amplifiers (50 Ω)
Continued from previous page.

Hewlett-Packard MMIC \dagger

| | Freq Range | Typical | Output Level 1 dB | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Device | $(G H z)$ | Gain $(d B)$ | Comp $(d B m)$ | $N F(d B)$ | $I_{\max }(m A)$ |
| MGA-86576 | $1.5-8$ | 15.4 | 3.8 | 2.1 | 22 |

Motorola Hybrid Amplifiers (50 Ω)

	Freq Range $(M H z)$	Gain (dB) min/typ	Supply Voltage (V)	Output Level, $1 d B$ Comp (dBm)	NF at 250 MHz (dB)
MWA110	$0.1-400$	$13 / 14$	2.9	-2.5	4
MWA120	$0.1-400$	$13 / 14$	5	+8.2	5.5
MWA130	$0.1-400$	$13 / 14$	5.5	+18	7
MWA131	$0.1-400$	$13 / 14$	5.5	+20	5
MWA210	$0.1-600$	$9 / 10$	1.75	+1.5	6
MWA220	$0.1-600$	$9 / 10$	3.2	+10.5	6.5
MWA230	$0.1-600$	$9 / 10$	4.4	+18.5	7.5
MWA310	$0.1-1000$	$7 / 8$	1.6	+3.5	6.5
MWA320	$0.1-1000$	$7 / 8$	2.9	+11.5	6.7
MWA330	$0.1-1000$	na/6.2	4	+15.2	9

MWAxxx case 31A-03/2†
\dagger For package shape, size and pin-connection information, see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.

General Purpose Transistors ${ }^{\dagger}$
Listed numerically by device

Device	Type	$v_{\text {CEO }}$ Maximum Collector Emitter Voltage (V)	$v_{C B O}$ - Maximum Emitter Base Voltage (V)	$V_{E B O}$ Maximum Emitter Base Voltage (V)	I_{c} Maximum Collector Current (mA)	P_{D} Maximum Device Dissipation (W)	Minimum DC $I_{C}=0.1 \mathrm{~mA}$	Current Gain $h_{F E}$ $I_{C}=150 \mathrm{~mA}$	Current- Gain Bandwidth Product $t_{T}{ }^{*}$ (MHz)	Noise Figure NF Maximum (dB)
2 N 918	NPN	15	30	3.0	50	0.200	20 (3 mA)	-	600	6.0
2N2102	NPN	65	120	7.0	1000	1.0	20	40	60	6.0
2N2218	NPN	30	60	5.0	800	0.8	20	40	250	
2N2218A	NPN	40	75	6.0	800	0.8	20	40	250	
2N2219	NPN	30	60	5.0	800	3.0	35	100	250	
2N2219A	NPN	40	75	6.0	800	3.0	35	100	300	4.0
2N2222	NPN	30	60	5.0	800	1.2	35	100	250	
2N2222A	NPN	40	75	6.0	800	1.2	35	100	200	4.0
2N2905	PNP	40	60	5.0	600	0.6	35	-	200	
2N2905A	PNP	60	60	5.0	600	0.6	75	100	200	
2N2907	PNP	40	60	5.0	600	0.400	35	-	200	
2N2907A	PNP	60	60	5.0	600	0.400	75	100	200	
2N3053	NPN	40	60	5.0	700	5.0	-	50	100	
2N3053A	NPN	60	80	5.0	700	5.0	-	50	100	
2N3563	NPN	15	30	2.0	50	0.600	20	-	800	
2N3904	NPN	40	60	6.0	200	0.625	40	-	300	5.0
2N3906	PNP	40	40	5.0	200	1.5	60	-	250	4.0
2N4037	PNP	40	60	7.0	1000	5.0	-	50		
2N4123	NPN	30	40	5.0	200	0.35	-	$25(50 \mathrm{~mA})$	250	6.0
2N4124	NPN	25	30	5.0	200	0.350	120 (2 mA)	60(50 mA)	300	5.0
2N4125	PNP	30	30	4.0	200	0.625	50 (2 mA)	$25(50 \mathrm{~mA})$	200	5.0
2N4126	PNP	25	25	4.0	200	0.625	120 (2 mA)	60(50 mA)	250	4.0
2N4401	NPN	40	60	6.0	600	0.625	20	100	250	
2N4403	PNP	40	40	5.0	600	0.625	30	100	200	
2N5320	NPN	75	100	7.0	2000	10.0	-	30(1 A)		
2N5415	PNP	200	200	4.0	1000	10.0	-	$30(50 \mathrm{~mA})$	15	
MM4003	PNP	250	250	4.0	500	1.0	20 (10 mA)	-		
MPSA55	PNP	60	60	4.0	500	0.625	-	50 (0.1 A)	50	
MPS6531	NPN	40	60	5.0	600	0.625	60 (10 mA)	90 (0.1 A)		
MPS6547	NPN	25	35	3.0	50	0.625	20 (2 mA)	-	600	

* Test conditions: $\mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}$ dc; $V C E=20 \mathrm{~V} ; \mathrm{f}=100 \mathrm{MHz}$

RF Power Amplifier Modules

Listed by frequency

Device	Supply (V)	Frequency Range $(M H z)$	Ouput Power (W)	Power Gain (dB)	Packaget	Mfr/ Notes
M57735	17	$50-54$	14	21	H3C	MI; SSB mobile
M57719N	17	$142-163$	14	18.4	H2	MI; FM mobile
S-AV17	16	$144-148$	60	21.7	$5-53 \mathrm{~L}$	T, FM mobile
S-AV7	16	$144-148$	28	21.4	$5-53 \mathrm{H}$	T, FM mobile
MHW607-1	7.5	$136-50$	7	38.4	$301 \mathrm{~K}-02 / 3$	MO; class C
BGY35	12.5	$132-156$	18	20.8	SOT132B	P
M67712	17	$220-225$	25	20	H3B	MI; SSB mobile
M57774	17	$220-225$	25	20	H2	MI; FM mobile
MHW720-1	12.5	$400-440$	20	21	$700-04 / 1$	MO; class C
MHW720-2	12.5	$440-470$	20	21	700-04/1	MO; class C
M57789	17	$890-915$	12	33.8	H3B	MI
MHW912	12.5	$880-915$	12	40.8	301R-01/1	MO; class AB
MHW820-3	12.5	$870-950$	18	17.1	$301 G-03 / 1$	MO; class C

Manufacturer codes: MO = Motorola; $\mathrm{MI}=$ Mitsubishi; $\mathrm{P}=$ Philips; $\mathrm{T}=$ Toshiba .
\dagger For package shape, size and pin-connection information, see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.

General Purpose Silicon Power Transistors

TO-220 case*

NPN	PNP	I_{c} Max (A)	$\begin{aligned} & V_{C E O} M a x \\ & (V) \\ & \text { (V) } \end{aligned}$	$h_{F E}$ Min	$\begin{aligned} & F_{T} \\ & (M H z) \end{aligned}$	Power Dissipation (W)
D44C8	D45C8	$\begin{array}{r} 4 \\ -4 \end{array}$	$\begin{array}{r} 60 \\ -60 \end{array}$	$\begin{aligned} & 100 / 220 \\ & 40 / 120 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$
TIP29	TIP30A	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \hline 15 / 75 \\ & 15 / 75 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$
TIP29A	TIP30A	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 15 / 75 \\ & 15 / 75 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$
TIP29B		1	80	15/75	3	30
TIP29C	TIP30C	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 15 / 75 \\ & 15 / 75 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$
$\begin{aligned} & \text { TIP47 } \\ & \text { TIP48 } \\ & \text { TIP49 } \\ & \text { TIP50 } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 250 \\ & 300 \\ & 350 \\ & 400 \end{aligned}$	$\begin{aligned} & 30 / 150 \\ & 30 / 150 \\ & 30 / 150 \\ & 30 / 150 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$
TIP110	TIP115	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{array}{r} 60 \\ -60 \end{array}$	$\begin{aligned} & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & >5 \\ & >5 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$
TIP116		2	80	500	25	50
TIP31	TIP32	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$
TIP31A	TIP32A	$\begin{aligned} & \hline 3 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 40 \\ & 40 \end{aligned}$
TIP31B	TIP32B	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$
TIP31C	TIP32C	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$
2N6124 2N6122 MJE13004		$\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{array}{r} 45 \\ 60 \\ 300 \end{array}$	$\begin{aligned} & 25 / 100 \\ & 25 / 100 \\ & 6 / 30 \end{aligned}$	$\begin{array}{r} 2.5 \\ 2.5 \\ 4 \end{array}$	$\begin{aligned} & 40 \\ & 40 \\ & 60 \end{aligned}$
TIP120	TIP125	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{array}{r} 60 \\ -60 \end{array}$	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	$\begin{array}{r} >5 \\ >10 \end{array}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$
$\begin{aligned} & \text { TIP42 } \\ & \text { TIP41A } \\ & \text { TIP41B } \end{aligned}$		$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \\ & 80 \end{aligned}$	$\begin{aligned} & 15 / 75 \\ & 15 / 75 \\ & 15 / 75 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 65 \end{aligned}$
2N6290	2N6109	$\begin{aligned} & 7 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{array}{r} 30 / 150 \\ 30 / 150 \\ \hline \end{array}$	$\begin{aligned} & 4 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & \hline \end{aligned}$
2N6292	2N6107	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 30 / 150 \\ & 30 / 150 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$
MJE3055T	MJE2955T	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 20 / 70 \\ & 20 / 70 \end{aligned}$	-	$\begin{aligned} & 75 \\ & 57 \end{aligned}$
TIP140	TIP145	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 60 \\ -60 \end{array}$	$\begin{aligned} & 500 \\ & 500 \end{aligned}$	$\begin{array}{r} >5 \\ >10 \end{array}$	$\begin{aligned} & 125 \\ & 125 \end{aligned}$

Continued on next page.

General Purpose Silicon Power Transistors

Continued from previous page.
TO-204 case (TO-3)*

NPN	PNP	I_{c} Max (A)	$\begin{aligned} & V_{C E O} \operatorname{Max} \\ & (V) \end{aligned}$	$h_{\text {FE }}$ Min	$\begin{aligned} & F_{T} \\ & (M H z) \end{aligned}$	Power Dissipation (W)
2N6486		15	40	20/150	5	75
2N6488		15	80	20/150	5	75
2N6545		8	400	7/35	6	125
2N3789		10	60	15	4	150
2N3715		10	60	30	4	150
	2N3791	10	60	30	4	150
2N5875		10	60	20/100	4	150
2N3790		10	80	15	4	150
2N3716		10	80	30	4	150
	2N3792	10	80	30	4	150
2N3055		15	60	20/70	2.5	115
	MJ2955	15	60	20/70	2.5	115
2N3055A		15	60	20/70	0.8	115
2N5881		15	60	20/100	4	160
2N5880		15	80	20/100	4	160
2N6249		15	200	10/50	2.5	175
2N6250		15	275	8/50	2.5	175
2N6546		15	300	6/30	6-24	175
2N6251		15	350	6/50	2.5	175
2N5630		16	120	20/80	1	200
2N3773		16	140	15/60	4	200
2N5039		20	75	20/100	60	140
2N5303		20	80	15/60	2	200
2N6284		20	100	750/18K	-	160
	2N6287	20	100	750/18K	-	160
MJ15003		20	140	25/150	2	250
	MJ15004	20	140	25/150	2	250
2N5885		25	60	-	4	200
2N5886		25	80	20/100	4	200
	2N5884	25	80	20/100	4	200
MJ15024		25	250	15/60	5	250
2N3771		30	40	-	2	150
2N5301		30	40	15/60	2	200
2N5302		30	60	15/60	2	200
	2N4399	30	60	15/60	2	200
MJ802		30	100	25/100	2	200
	MJ4502	30	100	25/100	2	200

- Complimentary pairs

[^1]| Device | Output Power (W) | Input
 Power (W) | Gain (dB) | Typ Supply Voltage (V) | Caset | Mfr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.5 to 30 MHz , HF SSB/CW | | | | | | |
| 2SC2086 | 0.3 | | 13 | 12 | TO-92 | MI |
| BLV10 | 1 | | 18 | 12 | SOT123 | PH |
| BLV11 | 2 | | 18 | 12 | SOT123 | PH |
| MRF476 | 3 | 0.1 | 15 | 12.5-13.6 | 221A-04/1 | MO |
| BLW87 | 6 | | 18 | 12 | SOT123 | PH |
| 2SC2166 | 6 | | 13.8 | 12 | TO-220 | MI |
| BLW83 | 10 | | 20 | 26 | SOT123 | PH |
| MRF475 | 12 | 1.2 | 10 | 12.5-13.6 | 221A-04/1 | MO |
| MRF433 | 12.5 | 0.125 | 20 | 12.5-13.6 | 211-07/1 | MO |
| 2SC3133 | 13 | | 14 | 12 | TO-220 | MI |
| MRF485 | 15 | 1.5 | 10 | 28 | 221A-04/1 | MO |
| 2SC1969 | 16 | | 12 | 12 | TO-220 | MI |
| BLW50F | 16 | | 19.5 | 45 | SOT123 | PH |
| MRF406 | 20 | 1.25 | 12 | 12.5-13.6 | 221-07/1 | MO |
| SD1285 | 20 | 0.65 | 15 | 12.5 | M113 | SG |
| MRF426 | 25 | 0.16 | 22 | 28 | 211-07/1 | MO |
| MRF427 | 25 | 0.4 | 18 | 50 | 211-11/1 | MO |
| MRF477 | 40 | 1.25 | 15 | 12.5-13.6 | 211-11/1 | MO |
| MRF466 | 40 | 1.25 | 15 | 28 | 211-07/1 | MO |
| BLW96 | 50 | | 19 | 40 | SOT121 | PH |
| 2SC3241 | 75 | | 12.3 | 12.5 | T-45E | MI |
| SD1405 | 75 | 3.8 | 13 | 12.5 | M174 | SG |
| $2 \mathrm{SC2097}$ | 75 | | 12.3 | 13.5 | T-40E | MI |
| MRF464 | 80 | 2.53 | 10 | 28 | 211-11/1 | MO |
| MRF421 | 100 | 10 | 10 | 12.5-13.6 | 211-11/1 | MO |
| SD1487 | 100 | 7.9 | 11 | 12.5 | M174 | SG |
| 2SC2904 | 100 | | 11.5 | 12.5 | T-40E | MI |
| SD1729 | 130 | 8.2 | 12 | 28 | M174 | SG |
| MRF422 | 150 | 15 | 10 | 28 | 211-11/1 | MO |
| MRF428 | 150 | 7.5 | 13 | 50 | 211-11/1 | MO |
| SD1726 | 150 | 6 | 14 | 50 | M174 | SG |
| PT9790 | 150 | 4.8 | 15 | 50 | 211-11/1 | MO |
| MRF448 | 250 | 15.7 | 12 | 50 | 211-11/1 | MO |
| MRF430 | 600 | 60 | 10 | 50 | 368-02/1 | MO |
| 50 MHz | | | | | | |
| MRF475 | 4 | 0.4 | 10 | 125-13.6 | 221A-04/1 | MO |
| MRF497 | 40 | 4 | 10 | 12.5-13.6 | 221A-04/2 | MO |
| SD1446 | 70 | 7 | 10 | 12.5 | M113 | SG |
| MRF492 | 70 | 5.6 | 11 | 12.5-13.6 | 211-11/1 | MO |
| SD1405 | 100 | 20 | 7 | 12.5 | M174 | SG |

VHF to 175 MHz			
2N4427	0.7		8
2N3866	1		10
BFQ42	1.5		8.4
2SC2056	1.6		9
2N3553	2.5	0.25	10
BFQ43	3		9.4
SD1012	4	0.25	12
2SC2627	5		13
2N5641	7	1	8.4
MRF340	8	0.4	13
BLW29	9		7.4
SD1143	10	1	10

RF Power Transistors

Continued from previous page.

Device	Output Power (W)	Input Power (W)	Gain (dB)	Typ Supply Voltage (V)	Case ${ }^{\dagger}$	Mfr
2SC1729	14		10	13.5	T-31E	MI
SD1014-02	15	3.5	6.3	12.5	M135	SG
BLV11	15		8	13.5	SOT123	PH
2N5642	20	3	8.2	28	145A-09/1	MO
MRF342	24	1.9	11	28	221A-04/2	MO
BLW87	25		6	13.5	SOT123	PH
2SC1946	28		6.7	13.5	T-31E	MI
MRF314	30	3	10	28	211-07/1	MO
SD1018	40	14	4.5	12.5	M135	SG
2N5643	40	6.9	7.6	28	145A-09/1	MO
BLW40	40		10	12.5	SOT120	PH
MRF315	45	5.7	9	28	211-07/1	MO
PT9733	50	10	7	28	145A-09/1	MO
MRF344	60	15	6	28	221A-04/2	MO
2SC2694	70		6.7	12.5	T-40	MI
BLV75/12	75		6.5	12.5	SOT119	PH
MRF316	80	8	10	28	316-01/1	MO
SD1477	100	25	6	12.5	M111	SG
BLW78	100		6	28	SOT121	PH
MRF317	100	12.5	9	28	316-01/1	MO
TP9386	150	15	10	28	316-01/1	MO
220 MHz						
MRF207	1	0.15	8.2	12.5	79-04/1	MO
2N5109	2.5		11	12	TO-205AD	MO
MRF227	3	0.13	13.5	12.5	79-05/5	MO
MRF208	10	1	10	12.5	145A-09/1	MO
MRF226	13	1.6	9	12.5	145A-09/1	MO
2SC2133	30		8.2	28	T-40E	MI
2SC2134	60		7	28	T-40E	MI
2SC2609	100		6	28	T-40E	MI
UHF to 512 MHz						
2N4427	0.4		10	12.5	TO-39	PH
2SC3019	0.5		14	12.5	T-43	MI
MRF581	0.6	0.03	13	12.5	317-01/2	MO
2SC908	1		4	12.5	TO-39	MI
2N3866	1		10	28	TO-39	PH
2SC2131	1.4		6.7	13.5	TO-39	MI
BLX65E	2		9	12.5	TO-39	PH
BLW89	2		12	28	SOT122	PH
MRF586	2.5		16.5	15	79-04	MO
MRF630	3	0.33	9.5	12.5	79-05/5	MO
2SC3020	3	0.3	10	12.5	T-31E	MI
BLW80	4		8	12.5	SOT122	PH
BLW90	4		11	12.5	SOT122	PH
MRF652	5	0.5	10	12.5	244-04/1	MO
MRF587	5		16.5	15	244A-01/1	MO
2SC3021	7	1.2	7.6	12.5	T-31E	MI
BLW81	10		6	12.5	SOT122	PH
MRF653	10	2	7	12.5	244-04/1	MO
BLW91	10		9	28	SOT122	PH
MRF654	15	2.5	7.8	12.5	244-04/1	MO
2SC3022	18	6	4.7	12.5	T-31E	MI
BLU20/12	20		6.5	12.5	SOT119	PH
BLX94A	25		6	28	SOT48/2	PH

RF Power Transistors

Continued from previous page.

Device	Output Power (W)	Input Power (W)	Gain (dB)	Typ Supply Voltage (V)	Caset ${ }^{\text {t }}$	Mfr
2SC2695	28		4.9	13.5	T-31E	M
BLU30/12	30		6	12.5	SOT119	PH
BLU45/12	45		4.8	12.5	SOT119	PH
2SC2905	45		4.8	12.5	T-40E	MI
MRF650	50	15.8	5	12.5	316-01/1	MO
TP5051	50	6	9	24	333A-02/2	MO
BLU60/12	60		4.4	12.5	SOT119	PH
2SC3102	60	20	4.8	12.5	T-41E	MI
BLU60/28	60		7	28	SOT119	PH
MRF658	65	25	4.15	12.5	316-01/1	MO
MRF338	80	15	7.3	28	333-04/1	MO
SD1464	100	28.2	5.5	28	M168	SG
UHF to 960 MHz						
MRF581	0.6	0.06	10	12.5	317-01/2	MO
MRF8372	0.75	0.11	8	12.5	751-04/1	MO
MRF557	1.5	0.23	8	12.5	317D-02/2	MO
BLV99	2		9	24	SOT172	PH
SD1420	2.1	0.27	9	24	M122	SG
MRF839	3	0.46	8	12.5	305A-01/1	MO
MRF896	3	0.3	10	24	305-01/1	MO
MRF891	5	0.63	9	24	319-06/2	MO
2SC2932	6		7.8	12.5	T-31B	MI
SD1398	6	0.6	10	24	M142	SG
2SC2933	14	3	6.7	12.5	T-31B	MI
SD1400-03	14	1.6	9.5	24	M118	SG
MRF873	15	3	7	12.5	319-06/2	MO
SD1495-03	30	6	7	24	M142	SG
SD1424	30	5.3	7.5	24	M156	SG
MRF897	30	3	10	24	395B-01/1	MO
MRF847	45	16	4.5	12.5	319-06/1	MO
BLV101A	50		8.5	26	SOT273	PH
SD1496-03	55	10	7.4	24	M142	SG
MRF898	60	12	7	24	333A-02/1	MO
MRF880	90	12.7	8.5	26	375A-01/1	MO
MRF899	150	24	8	26	375A-01/1	MO

Manufacturer codes: MI = Mitsubishi; MO = Motorola; PH = Philips; SG = SGE/Thomson
\dagger For package shape, size and pin-connection information, see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.

Power FETs

Device	Type	$V D S S$ min (V)	RDS(on) max (W)	ID max (A)	$P D \max (W)$	Case ${ }^{\text {t }}$	Mfr
BS250P	P-channel	45	14	0.23	0.7	E-line	Z
IRFZ30	N -channel	50	0.050	30	75	TO-220	IR
MTP50N05E	N -channel	50	0.028	25	150	TO-220AB	M
IRFZ42	N -channel	50	0.035	50	150	TO-220	IR
2N7000	N -channel	60	5	0.20	0.4	E-line	Z
VN10LP	N -channel	60	7.5	0.27	0.625	E-line	Z
VN10KM	N -channel	60	5	0.3	1	TO-237	S
ZVN2106B	N -channel	60	2	1.2	5	TO-39	Z
IRF511	N -channel	60	0.6	2.5	20	TO-220AB	M
MTP2955E	P-channel	60	0.3	6	25	TO-220AB	M
IRF531	N -channel	60	0.180	14	75	TO-220AB	M
MTP23P06	P-channel	60	0.12	11.5	125	TO-220AB	M
IRFZ44	N -channel	60	0.028	50	150	TO-220	IR
IRF531	N -channel	80	0.160	14	79	TO-220	IR
ZVP3310A	P-channel	100	20	0.14	0.625	E-line	Z
ZVN2110B	N -channel	100	4	0.85	5	TO-39	Z
ZVP3310B	P-channel	100	20	0.3	5	TO-39	Z
IRF510	N -channel	100	0.6	2	20	TO-220AB	M
IRF520	N -channel	100	0.27	5	40	TO-220AB	M
IRF150	N -channel	100	0.055	40	150	TO-204AE	M
IRFP150	N -channel	100	0.055	40	180	TO-247	IR
ZVP1320A	P-channel	200	80	0.02	0.625	E-line	Z
ZVN0120B	N -channel	200	16	0.42	5	TO-39	Z
ZVP1320B	P-channel	200	80	0.1	5	TO-39	Z
IRF620	N -channel	200	0.800	5	40	TO-220AB	M
MTP6P20E	P-channel	200		3	75	TO-220AB	M
IRF220	N -channel	200	0.400	8	75	TO-220AB	M
IRF640	N -channel	200	0.18	10	125	TO-220AB	M

Manufacturers: IR = International Rectifier; M = Motorola; S = Siliconix; Z = Zetex.
\dagger For package shape, size and pin-connection information, see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.

Logic IC Families

	Propa for C_{L} (ation Delay 50 pF)	Max Clock Frequency	Power Dissipation $(C L=0)$ @ 1 MHz	Output Current @ 0.5 V	Input Current	Threshold	Supply	Voltage	
Type	Typ	Max	(MHz)	(mW/gate)	$\max (m A)$	(Max mA)	Voltage (V)	Min	Typ	Max
CMOS										
74AC	3	5.1	125	0.5	24	0	V+/2	2	5 or 3.3	6
74ACT	3	5.1	125	0.5	24	0	1.4	4.5	5	5.5
74HC	9	18	30	0.5	8	0	V+/2	2	5	6
74HCT	9	18	30	0.5	8	0	1.4	4.5	5	5.5
$\begin{gathered} 4000 \mathrm{~B} / 74 \mathrm{C} \\ (10 \mathrm{~V}) \end{gathered}$	30	60	5	1.2	1.3	0	V+/2	3	5-15	18
$\begin{aligned} & 4000 \mathrm{~B} / 74 \mathrm{C} \\ & (5 \mathrm{~V}) \end{aligned}$	50	90	2	3.3	0.5	0	$\mathrm{V}+$ /2	3	5-15	18
TTL										
74AS	2	4.5	105	8	20	0.5	1.5	4.5	5	5.5
74F	3.5	5	100	5.4	20	0.6	1.6	4.75	5	5.25
74ALS	4	11	34	1.3	8	0.1	1.4	4.5	5	5.5
74LS	10	15	25	2	8	0.4	1.1	4.75	5	5.25
ECL										
ECL III	1.0	1.5	500	60	-	-	-1.3	-5.19	-5.2	-5.21
ECL 100K	0.75	1.0	350	40	-	-	-1.32	-4.2	-4.5	-5.2
ECL100KH	1.0	1.5	250	25	-	-	-1.29	-4.9	-5.2	-5.5
ECL 10K	2.0	2.9	125	25	-	-	-1.3	-5.19	-5.2	-5.21
GaAs										
10G	0.3	0.32	2700	125	-	-	-1.3	-3.3	-3.4	-3.5
10G	0.3	0.32	2700	125	-	-	-1.3	-5.1	-5.2	-5.5

Source: Horowitz (W1HFA) and Hill, The Art of Electronics—2nd edition, page 570. © Cambridge University Press 1980, 1989. Reprinted with the permission of Cambridge University Press.

Three-Terminal Voltage Regulators

Listed numerically by device

Device	Description	Package	Voltage	Current (Amps)
317	Adj Pos	TO-205	+1.2 to +37	0.5
317	Adj Pos	TO-204,TO-220	+1.2 to +37	1.5
317L	Low Current Adj Pos	TO-205,TO-92	+1.2 to +37	0.1
317M	Med Current Adj Pos	TO-220	+1.2 to +37	0.5
338	Adj Pos	TO-3	+1.2 to +32	5.0
350	High Current Adj Pos	TO-204,TO-220	+1.2 to +33	3.0
337	Adj Neg	TO-205	-1.2 to -37	0.5
337	Adj Neg	TO-204,TO-220	-1.2 to -37	1.5
337M	Med Current Adj Neg	TO-220	-1.2 to -37	0.5
309		TO-205	+5	0.2
309		TO-204	+5	1.0
323		TO-204,TO-220	+5	3.0
140-XX	Fixed Pos	TO-204,TO-220	Note 1	1.0
340-XX		TO-204,TO-220		1.0
78XX		TO-204,TO-220		1.0
78LXX		TO-205,TO-92		0.1
78MXX		TO-220		0.5
78TXX		TO-204		3.0
79XX	Fixed Neg	TO-204,TO-220	Note 1	1.0
79LXX		TO-205,TO-92		0.1
79MXX		TO-220		0.5

Note $1-\mathrm{XX}$ indicates the regulated voltage; this value may be anywhere from 1.2 V to 35 V . A 7815 is a positive $15-\mathrm{V}$ regulator, and a 7924 is a negative $24-\mathrm{V}$ regulator.

The regulator package may be denoted by an additional suffix, according to the following:

Package	Suffix
TO-204 (TO-3)	K
TO-220	T
TO-205 (TO-39)	H, G
TO-92	P, Z

For example, a 7812 K is a positive $12-\mathrm{V}$ regulator in a TO-204 package. An LM340T-5 is a positive $5-\mathrm{V}$ regulator in a TO-220 package. In addition, different manufacturers use different prefixes. An LM7805 is equivalent to a $\mu \mathrm{A} 7805$ or MC7805.

Three-Terminal Voltage Regulators

Continued from previous page.

K Suffix
 Metal TO-204 Package

Pins 1 and 2 Electrically Isolated from Case.
Case is Third Electrical Connection.

Electical Connection.

BOTTOM VIEW

317
350

Case is Output

Case is Input
337

ase is

Case is
Ground
140 k-XX
$340 \mathrm{k}-\mathrm{XX}$ 309
7800 Series 78 T00 Series

Case is Input 7900 Series

T Suffix
TO - 220 Package

H, G Suffix
TO-205 Package
bоtтом VIEW

Case is Output
317
Case is Input
337
317

Case is
Ground
$78 L 00$
Series
78M00
Series
Case is Input 79 LOO Series 79 MOO Series
P, Z Suffix TO-92 Package

78L00 Series

79L00 Series

Op Amp ICs
Listed by device number

Device	Type	Freq Comp	Max Supply* (V)	Min Input Resistance ($M \Omega$)	Max Offset Voltage (mV)	Min dc OpenLoop Gain (dB)	Min Output Current (mA)	Min SmallSignal Bandwidth (MHz)	Min Slew Rate ($\mathrm{V} / \mu \mathrm{s}$)	Notes
101A	Bipolar	ext	44	1.5	3.0	79	15	1.0	0.5	General purpose
108	Bipolar	ext	40	30	2.0	100	5	1.0		
124	Bipolar	int	32		5.0	100	5	1.0		Quad op amp, low power
148	Bipolar	int	44	0.8	5.0	90	10	1.0	0.5	Quad 741
158	Bipolar	int	32		5.0	100	5	1.0		Dual op amp, low power
301	Bipolar	ext	36	0.5	7.5	88	5	1.0	10	Bandwidth extendable with external components
324	Bipolar	int	32		7.0	100	10	1.0		Quad op amp, single supply
347	BiFET	ext	36	10^{6}	5.0	100	30	4	13	Quad, high speed
351	BiFET	ext	36	10^{6}	5.0	100	20	4	13	
353	BiFET	ext	36	10^{6}	5.0	100	15	4	13	
355	BiFET	ext	44	10^{6}	10.0	100	25	2.5	5	
355B	BiFET	ext	44	10^{6}	5.0	100	25	2.5	5	
356A	BiFET	ext	36	10^{6}	2.0	100	25	4.5	12	
356B	BiFET	ext	44	10^{6}	5.0	100	25	5.0	12	
357	BiFET	ext	36	10^{6}	10.0	100	25	20.0	50	
357B	BiFET	ext	36	10^{6}	5.0	100	25	20.0	30	
358	Bipolar	int	32		7.0	100	10	1.0		Dual op amp, single supply
411	BiFET	ext	36	10^{6}	2.0	100	20	4.0	15	Low offset, low drift
709	Bipolar	ext	36	0.05	7.5	84	5	0.3	0.15	
741	Bipolar	int	36	0.3	6.0	88	5	0.4	0.2	
741S	Bipolar	int	36	0.3	6.0	86	5	1.0	3	Improved 741 for AF
1436	Bipolar	int	68	10	5.0	100	17	1.0	2.0	High-voltage
1437	Bipolar	ext	36	0.050	7.5	90		1.0	0.25	Matched, dual 1709
1439	Bipolar	ext	36	0.100	7.5	100		1.0	34	
1456	Bipolar	int	44	3.0	10.0	100	9.0	1.0	2.5	Dual 1741
1458	Bipolar	int	36	0.3	6.0	100	20.0	0.5	3.0	
1458S	Bipolar	int	36	0.3	6.0	86	5.0	0.5	3.0	Improved 1458 for AF
1709	Bipolar	ext	36	0.040	6.0	80	10.0	1.0		
1741	Bipolar	int	36	0.3	5.0	100	20.0	1.0	0.5	
1747	Bipolar	int	44	0.3	5.0	100	25.0	1.0	0.5	Dual 1741

Top View

Continued on next page.

Op Amp ICs
Continued from previous page.
Listed by device number

Device	Type	Freq Comp	Max Supply* (V)	Min Input Resistance (MS)	Max Offset Voltage (mV)	Min dc OpenLoop Gain (dB)	Min Output Current (m A)	Min SmallSignal Bandwidth (MHz)	Min Slew Rate ($V / \mu s$)	Notes
1748	Bipolar	ext	44	0.3	6.0	100	25.0	1.0	0.8	Noncompensated 1741
1776	Bipolar	int	36	50	5.0	110	5.0		0.35	Micro power, programmable
3140	BiFET	int	36	1.5×10^{6}	2.0	86	1	3.7	9	Strobable output
3403	Bipolar	int	36	0.3	10.0	80		1.0	0.6	Quad, low power
3405	Bipolar	ext	36		10.0	86	10	1.0	0.6	Dual op amp and dual comparator
3458	Bipolar	int	36	0.3	10.0	86	10	1.0	0.6	Dual, low power
3476	Bipolar	int	36	5.0	6.0	92	12		0.8	
3900	Bipolar	int	32	1.0		65	0.5	4.0	0.5	Quad, Norton single supply
4558	Bipolar	int	44	0.3	5.0	88	10	2.5	1.0	Dual, wideband
4741	Bipolar	int	44	0.3	5.0	94	20	1.0	0.5	Quad 1741
5534	Bipolar	int	44	0.030	5.0	100	38	10.0	13	Low noise, can swing 20V P-P across 600
5556	Bipolar	int	36	1.0	12.0	88	5.0	0.5	1	Equivalent to 1456
5558	Bipolar	int	36	0.15	10.0	84	4.0	0.5	0.3	Dual, equivalent to 1458
34001	BiFET	int	44	10^{6}	2.0	94		4.0	13	JFET input
AD745	BiFET	int	± 18	10^{4}	0.5	63	20	20	12.5	Ultra-low noise, high speed

LT1001 Precision op amp, low offset voltage ($15 \mu \mathrm{~V}$ max), low drift ($0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max), low noise ($0.3 \mu \mathrm{Vp}-\mathrm{p}$)
LT1007 Extremely low noise ($0.06 \mu \mathrm{Vp}-\mathrm{p}$), very high gain (20×10^{6} into $2 \mathrm{k} \Omega$ load)
LT1360 High speed, very high slew rate ($800 \mathrm{~V} / \mu \mathrm{s}$), 50 MHz gain bandwidth, $\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ supply range

NE5514 Bipolarint	± 16	100	1		10	3	0.6	
NE5532 Bipolarint	± 20	0.03	4	47	10	10	9	Low noise
OP-27A Bipolarext	44	1.5	0.025	115		5.0	1.7	Ultra-low noise,
						45.0	11.0	high speed
OP-37A Bipolar ext	44	1.5	0.025	115		4.0	13.0	Low noise
TL-071 BiFET int	36	10^{6}	6.0	91		4.0	8.0	
TL-081 BiFET int	36	10^{6}	6.0	88		4.0	8.0	Low noise
TL-082 BiFET int	36	10^{6}	15.0	99		4.0	8.0	Quad, high-
TL-084 BiFET int	36	10^{6}	15.0	88				performance AF
					44		0.6	0.6

*From -V to +V terminals

Triode Transmitting Tubes

Triode Transmitting Tubes

Continued from previous page．

$a^{\text {亏 }}$ ，	右	）	\bigcirc	208080	－	－8	｜r｜cren	880	
	1	1				${ }_{\sim}^{\infty} \times$	\bigcirc	1	11
± 3	M	$\overline{7}$	$=\sim$	\because	20	1	1	$\underset{\sim}{\infty} \times$	∞
$\begin{array}{ll} \text { 号 } & \text { e } \\ \hline \end{array}$	－	4	\cdots	$\stackrel{0}{6}$	O	1	1	\cdots	－
	$\stackrel{4}{4}$	\cdots	\％	\％	\％	\％ 8	8	\bigcirc	\cdots
$\left\lvert\, \begin{array}{lll} 0 & & \\ \frac{0}{0} & 0 & \hat{3} \\ \frac{3}{3} & \frac{\pi}{0} & \text { E } \\ 2 & & \end{array}\right.$	$1 \begin{aligned} & 0 \\ & 10 \\ & 0 \\ & 0 \end{aligned}$	\|	88		8				－
$\text { 운 } S$	10	10	$\left.\frac{2}{7} \right\rvert\,$	8	\bigcirc	－	in	\cdots	in
$\stackrel{3}{2} 2$	1	1	11	11	11	11	1	1	11
	0	8	8	8	0	$\underset{\sim}{\sim}$	\cdots		\bigcirc
$\frac{y y}{\frac{y y}{2}} \leq$	$\underset{\sim}{2}$	$\begin{aligned} & 8 \\ & \text { a } \end{aligned}$	$\stackrel{8}{8} \mid$	$\begin{array}{l\|l} 8 \\ \hline 8 \\ \hline 8 \\ \hline \end{array}$	8	$\begin{array}{\|l\|l} \hline 8 & 8 \\ \hline 0 \\ \hline \end{array}$	88	\mathfrak{s}	
$\begin{array}{ll} \stackrel{i}{4} & -\pi \\ 心 & 0 \\ \hline \end{array}$	©	$\left\|\begin{array}{c} 20 \\ <0 \end{array}\right\|$	0	0	0	$\begin{aligned} & \infty \\ & \stackrel{\infty}{4} \end{aligned}$	\bar{x}	\％	令
$\begin{gathered} 4 \\ \text { 管 } \end{gathered}$	䢒			1		1	1	㤟 $\frac{8}{c}$	\％
	＝			$\stackrel{\square}{\sim}$		$\underset{\sim}{\sim}$	\approx	～	$\stackrel{\sim}{\sim}$
	\bigcirc			$\begin{aligned} & \overrightarrow{4} \\ & \mathbf{0} \\ & \hline \end{aligned}$		$\begin{aligned} & 8 \\ & 8 \\ & 0 \end{aligned}$		$\frac{12}{0}$	
ぶ U	in			$\underset{\sim}{\mathrm{N}}$		m	n	∞	\therefore
若	\underline{m}			$\bar{\sim}$		$\stackrel{\sim}{\sim}$		$\stackrel{7}{\square}$	$\stackrel{+}{+}$
\bigcirc	$\underset{\sim}{\square}$			$\stackrel{i n}{\sim}$		\cdots	0	$\stackrel{\square}{\square}$	$\stackrel{\bigcirc}{\square}$
$$	은			1		8	8	$\stackrel{8}{n}$	8
	19			8		8	8	\％	i
	In			in		\cong	\simeq	8	4
$\begin{array}{ll} \frac{2}{2} & \sum \end{array}$	8			8		8	$\frac{8}{8}$	$\begin{aligned} & \underset{m}{8} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{e} \\ & \hline \mathbf{m} \end{aligned}$
$\frac{\pi}{2} \underset{0}{2}$	18			8		8	8	\％	8
$\stackrel{2}{2}$	免			$$		8 8 8		0 8 8 0 0	

[^2][^3]TV Deflection Tubes

[^4]
EIA Vacuum-Tube Base Diagrams

FIG 3

${ }^{\mathrm{P}_{\mathrm{BF}}} 7 \mathrm{CK}$

3G

12FJ

5AW

5AZ

8JX

12FK

12FY

FIG 87

FIG 41

5BA

5BK

6AM

9QL

9QU

FIG 11

12FB

Alphabetical subscripts ($\mathrm{D}=$ diode, $\mathrm{P}=$ pentode, $\mathrm{T}=$ triode and $\mathrm{HX}=$ hexode) indicate structures in multistructure tubes. Subscript CT indicates filament or heater center tap.
Generally, when pin 1 of a metal-envelope tube (except all triodes) is shown connected to the envelope, pin 1 of a glass-envelope counterpart (suffix G or GT) is connected to an internal shield.

Properties of Common Thermoplastics

Polyvinyl Chloride (PVC)

Advantages:
-can be compounded with plasticizers, filters, stabilizers, lubricants and impact modifiers to produce a wide range of physical properties
-can be pigmented to almost any color
-Rigid PVC has good corrosion and stain resistance, thermal \& electrical insulation, and weatherability

Disadvantages:

-base resin can be attacked by aromatic solvents, ketones, aldehydes, naphthalenes, and some chloride, acetate, and acrylate esters
-should not be used above 140°

Applications:

- conduit
- conduit boxes
- electrical fittings
-housings
- pipe
- wire and cable insulation

Polystyrene

Advantages:

- low cost
- moderate strength
- electrical properties only slightly affected by temperature and humidity
- sparkling clarity
-impact strength is increased by blending with rubbers, such as polybutadiene

Disadvantages:

-brittle

- low heat resistance

Applications:

- capacitors
- light shields
-knobs

Polyphenylene Sulfide (PPS)

Advantages:

-excellent dimensional stability

- strong
- high-temperature stability
- chemical resistant
- Inherently completely flame retardant
- completely transparent to microwave radia. tion.

Applications

R3-R5 have various glass-fiber levels that are suitable for applications demanding high mechanical and impact strength as well as good dielectric properties.
R8 and R10 are suitable for high arc-resistance applications
R9-901 is suitable for encapsulation of electronic devices

Polypropylene

Advantages:

- low density
-good balance of thermal, chemical, and electrical properties
- moderate strength (increases significantly with glass-fiber reinforcement)

Disadvantages:

- Electrical properties affected to varying degrees by temperature (as temperature goes up, dielectric strength increases and volume resistivity decreases.)
- Inherently unstable in presence of oxidative and UV radiation
Applications:
- Automotive battery cases
- blower housings
- fan blades
- fuse housings
- insulators
- lamp housings
- supports for current-carrying electrical components.
-TV yokes

Polyethylene (PE)

Advantages: Low Density PE

- Good toughness
- excellent chemical resistance
- excellent electrical properties
- low coefficient of friction
-near zero moisture absorption
-easy to process
-relatively low heat resistance

Disadvantage

-susceptible to environmental and some chemical stress cracking

- wetting agents (such as detergents) accelerate stress cracking
Advantages: High Density PE
- Same as above, plus increased rigidity and tensile strength

Advantages: Ultra-High Molecular Weight PE

- outstanding abrasion resistance
- low coefficient of friction
- high impact strength
- excellent chemical resistance
- material does not break in impact strength tests using standard notched specimens

Applications:

-bearings

- components requiring maximum abrasion resistance, impact strength, and low coefficent of friction

Phenolic

Advantages:

- low cost
-superior heat resistance
- high heat-deflection temperatures
- good electrical properties
- good flame resistance
- excellent moldability
-excellent dimensional stability
-good water and chemical resistance

Applications:

- commutators and housings for small motors
- heavy duty electrical components
- rotary-switch wafers
- insulating spacers

Nylon

Advantages

- excellent fatigue resistance
- low coefficient of friction
- toughness a function of degree of crystallinity
- resists many fuels and chemicals
- good creep- and cold-flow resistance as compared to less rigid thermoplastics
- resists repeated impacts

Disadvantages:

- all nylons absorb moisture
- nylons that have not been compounded with a UV stabilizer are sensitive to UV light, and thus not suitable for extended outdoor use

Applications

- bearings
- housing and tubing
- rope
- wire coatings
- wire connectors
- wear plates

Continued from previous page.

ASTM or UL test	Property	NYLONS (DRY, AS MOLDED)					Phenolics						POLYETHYLENE			
		Type					Type of compound						$\begin{aligned} & \text { Low } \\ & \text { density } \end{aligned}$	Medium density	$\begin{gathered} \text { High } \\ \text { density } \end{gathered}$	Ultrahigh molecular weight
		6/6	6	$6 / 12$	11	Castable	General purpose	impact	$\begin{gathered} \text { Non- } \\ \text { oleeding } \end{gathered}$	Electrical	Heat resistant	Special purpose				
PHYSICAL																
D792	Speclic gravity	1.14	1.13	1.06	1.04	1.15-1.17	1.35-1.46	1.36-1.41	1.37-1.38	1.36-1.75	1.41-1.84	1.37-1.75	0.910-0.925	0.926-0.940	0.941-0.965	0.928-0.941
D792	Specific volume ($\mathrm{in}^{3 / \mathrm{l}} \mathrm{b}$)	24.2	24.5	25.9	26.6	23.8							30.4-29.9	29.9-29.4	29.4-28.7	29.4
D570	Water absorption, 24 h . $1 / 8$-in. the (\%)	1.2	1.6	0.25	0.4	0.9	0.6-0.7	0.6-0.9	0.8-0.9	0.05-0.20	0.30-0.35	0.20-0.40	<0.01	<0.01	<0.01	<0.01
MECHANICAL																
D638	Tensile strength (psi)	12,000	11,800	8,800	8,500	$\begin{aligned} & 11,000 . \\ & 14,000 \end{aligned}$	6,500-7,000	6,000-7,000	6,000-7,000	5,000-7,000	5,000-6,000	7,000-9,000	600-2,300	1,200-3,500	3,100-5,500	4,000-6,000
D638	Elongation (\%)	60	200	150	120	10-50	11-13	12	10	17.25	14	10	90-800	50-600	20-1,000	200-500
0638	Tensile modulus ($10^{5} \mathrm{psi}$)	4.2	3.8	2.9	1.8	3.5-4.5							0.14-0.38	0.25-0.55	0.6-1.8	0.20-1.10
D785	Hardness, Rockwell ()	121 (R)	119 (R)	114 (R)	-	112-120 (R)	70-95 (E)	82 (E)	82 (日)	75-88(1)	94 (E)	76 (E)	10 (R)	15 (R)	65 (R)	55 (R)
D790	Flexural modulus ($10^{5} \mathrm{psi}$)	4.1	3.9	2.9	1.5	-	11-14	12-25	10-12	12-25	11-23	10.19	0.08-0.60	0.60-1.15	1.0-2.0	1.0-1.7
D256	Impact strength, lzod ($\mathrm{ft}-\mathrm{b} / \mathrm{ln}$ of notch)	1.0	0.8	1.0	3.3	0.9	0.30-0.35	0.6-1.05	0.28	0.28-0.45	0.26	0.50	No break	0.5-16	0.5-20	No break
THERMAL																
C177	Thermal conductivity (Btu-in/hr- ft^{2} - ${ }^{\circ}$ F)	1.7	1.7	1.5	-	1.7	$7.1{ }^{+}$	$7.9{ }^{\dagger}$	-	$16.0 \dagger$	-	$8.8{ }^{\dagger}$	8.0^{+}	8.0-10.0 ${ }^{\dagger}$	11.0-12.4	$11.0{ }^{+}$
D696	Coef of thermal expansion ($10^{-5} \mathrm{in} . \mathrm{in} . .^{\circ} \mathrm{F}$)	4.0	4.5	5.0	5.1	5.0	3.95	3.56	4.40	2.60	2.80	3.60	5.6-12.2	7.8-8.9	6.1-7.2	7.8
D648	Deflection temperature (${ }^{\circ} \mathrm{F}$)															
	Al 264 psi	194	152	194	118	300.425	275-360	270-500	370	310-400	330-380	360-430	90-105	105-120	110-130	118
	At 66 psi	455	365	356	154	400-425							100-121	120-165	140-190	170
UL 94	Flammability rating	V -2	V-2	V-2	-	-	V-1	HB	-	V.0	V-0	HB				
ELECTRICAL																
D149	Dielectric strength (V/mil) Short time, $1 / 8$ in. thk	600	400	400	425	500-600*	350	350-400	200	400	170	175	460-700	460-650	450-500	$900 *$
D150	Dielectric constant At 1 kHz	3.9	3.7	4.0	3.3	3.7	5.2-5.3	5.2-5.4	-	4.96.5	11.7	7.8	2.25-2.35	2.30-2.35	2.30-2.35	
D150	Dissipation factor At 1 kHz	0.02	0.02	0.02	0.03	0.02	0.04-0.05	0.04-0.06	-	0.025-0.10	0.15	0.12	0.0002	0.0002	0.0003	0.0002
D257	Volume resistivily (ohm-cm) At $73^{\circ} \mathrm{F} .50 \% \mathrm{RH}$	10^{15}	10^{15}	10^{15}	2×10^{13}	-	$10^{1 י 1010}$	$10^{י 1-10^{12}}$	10^{12}	$10^{10} 10^{13}$	10^{12}	10^{11}	10^{15}	10^{15}	10^{15}	10^{13}
D495	Arc resistance (s)	116	-	121	-	-	100	50	-	184	181	-	135-160	200-235	-	-
optical																
D542	Refractive Index												1.51	1.52	1.54	-
D1003	Transmittance (\%)												4-50	4.50	10-50	-

[^5]Continued on next page.

Continued from previous page.

ASTM or UL test	POLYPROPYLENE			POLYPHENYLENE SULFIDE*						POLYSTYRENE					POLYVINYL CHLORIDE	
	Unmoditied resin	Glass reinforced	Impact grade	Glass reinforced		Glass and mineral filled				Polymers		Copolymers			Rigid	Flexible
				R. 3	R-4	F-8	R. 9	$R-10^{5}$	R-11	General purpose	Impact modified	Crystal clear	Impact modified	$\begin{aligned} & 10-20 \% \text { (wt.) } \\ & \text { Glass reinf } \end{aligned}$		
D792	0.905	1.05-1.24	0.89-0.91	1.57	1.67	1.8	1.9	1.96-1.98	1.98	1.04-10.9	1.03-1.10	1.08-1.10	1.05-10.8	1.13-1.22	1.30-1.58	1.20-1.70
D792	30.8-30.4	24.5	30.8-30.5							26.0-25.6	28.1-25.2	-	-	-	20.5-19.1	-
D570																
	0.01-0.03	0.01-0.05	0.01-0.03	-	<0.05	0.03	-	-	-	0.03-0.10	0.05-0.6	0.1	0.1	0.08	0.04-0.4	0.15-0.75
D638	5,000	6,000-14,500	2,800-4,400	15,500	17,500	10,750	11,000	10,000-11,500	11,000	5,000-12,000	1,500.7,000	.7,000-7,600	4,800.7,200	10,500-12,500	6,000-7,500	1,500-3,500
D638	10-20	2.0-3.6	350.500	1.1	1.25	0.47	0.5	0.5-0.6	0,6	0.5-2.0	2.60	1.4-1.7	2.0-20.0	1.3-2.0	40-80	200-450
D638	1.6	4.5-9.0	1.0-1.7							4.0-6.0	1.4-5.0	4.4-4.7	2.8-4.2	6.3-10.0	3.5-6.0	-
D785	80-110 (R)	110 (R)	50-85 (R)	-	123 (R)	121 (R)	-	120 (R)	-	65-80	10-90	108	80	101	65-85D (Shore)	50-100A (Shore)
D790	1.7-2.5	3.8-8.5	1.2-1.8	14	17	22	21	18	20	4.0-4.7	1.5-4.6	4.6-4.9	3.2-4.5	5.5-9.8	3.5	-
D256	0.5-2.2	1.0-5.0	1.0-15	1.0	1.1	0.59	0.7	0.6-1.0	0.8	0.2-0.45	0.5-4.0	0.3-0.5	0.5-4.4	18-2.6	0.4-20.0	-
0117																
	$2.8{ }^{\ddagger}$	-	3.0-4.0 ${ }^{+}$	-	2.0	-	-	-	-	2.4-3.3	1.0-3.0	2.4-3.3	1.0-3.0	-	3.5-5.0 ${ }^{\dagger}$	3.0-4.0 ${ }^{\dagger}$
D696																
	3.2-5.7	1.6-2.9	3.3-4.7	-	2.2	1.6	1.1	-	-	3.3-4.4	1.9	3.5-3.7	3.5-3.7	2.0-2.2	2.8-5.6	3.9-13.9
0648																
	125-140	230-300	120.135	500	500	500	500	500	500	190.220	160-200	235-249	235-249	235-260	140-170	-
	200-250	310	160-210							180-230	180-220	-	-	-	135-180	-
UL 94	HB ${ }^{\text {b }}$	$\mathrm{HB}^{\text {b }}$	H8 ${ }^{\text {c }}$	v-0	V.0/5V	V.015V	V.o	V-015V	V-0	$\mathrm{HB}^{\text {b }}$	$\mathrm{HB}^{\text {b }}$	HB ${ }^{\text {b }}$	$\mathrm{HB}^{\text {b }}$	HB°	-	-
D149																
	$500-660$	475	500-650	-	-	-	-	-	-	500.700	300.600	500-700	300-600	-	350-500	$300 \cdot 400$
D150																
	2.2-2.6	2.36	2.3	-	4.0*	4.3*	4.5*	4.8-6.1*	-	2.40-2.65	2.4-4.5	-	-	-	3.0.3.8	4.0-8.0
D150																
	$0.0005-0.0018$	0.0017	0.0003	-	0.0014*	0.016*	0.0072*	0.01-0.02*	-	$0.0001-0.0003^{\circ}$	0.0004-0.0020	-	-	-	0.009-0.017	0.07-0.16
D257																
	10^{17}	2×10^{18}	10^{18}	-	-	-	-	-	-	$10^{17} 10^{19}$	10^{16}	-	-	-	$>10^{13}$	$10^{11}-10^{15}$
D495	160	100	-	-	34	182	180	116-182	-	60-135	20.100	95	95	-	60-80	1
0542										1.60	-	1.59	-	-		
D1003										87-92	35.57	92	-	-		

[^6]
Coaxial Cable End Connectors

UHF Connectors

Military No.	Style	Cable RG- or Description
PL-259	Str (m)	8, 9, 11, 13, 63, 87, 149, 213, 214, 216, 225
UG-111	Str (m)	59, 62, 71, 140, 210
SO-239	Pnl (f)	Std, mica/phenolic insulation
UG-266	Blkhd (f)	Rear mount, pressurized, copolymer of styrene ins.
Adapters		
PL-258	Str (f/f)	Polystyrene ins.
UG-224,363	Blkhd (f/f)	Polystyrene ins.
UG-646	Ang (f/m)	Polystyrene ins.
M-359A	Ang (m/f)	Polystyrene ins. M-358
T (f/m/f)	Polystyrene ins.	
Reducers		
UG-175		$55,58,141,142$ (except 55A)
UG-176		$59,62,71,140,210$

Family Characteristics:

All are nonweatherproof and have a nonconstant impedance. Frequency range: 0-500 MHz. Maximum voltage rating: 500 V (peak).

N Connectors

Military No.	Style	Cable RG-	Notes
UG-21	Str (m)	8, 9, 213, 214	50Ω
UG-94A	Str (m)	11, 13, 149, 216	70Ω
UG-536	Str (m)	58, 141, 142	50Ω
UG-603	Str (m)	59, 62, 71, 140, 210	50Ω
UG-23, B-E	Str (f)	8, 9, 87, 213, 214, 225	50Ω
UG-602	Str (f)	59, 62, 71, 140, 210	-
UG-228B, D,	EPnl (f)	8, 9, 87, 213, 214, 225	-
UG-1052	Pnl (f)	58, 141, 142	50Ω
UG-593	Pnl (f)	59, 62, 71, 140, 210	50Ω
UG-160A, B,	D Blkhd (f)	8, 9, 87, 213, 214, 225	50Ω
UG-556	Blkhd (f)	58, 141, 142	50Ω
UG-58, A	Pnl (f)		50Ω
UG-997A	Ang (f)		50Ω 11/16 ${ }^{\prime \prime}$
Pnl mount (f) with clearance above panel			
$\begin{aligned} & \text { M39012/04- } \\ & \text { UG-680 } \end{aligned}$	Blkhd (f) Blkhd (f)		Front moun Front mount

Continued on next page.

Coaxial Cable End Connectors

Continued from previous page.

N Adapters

Military No.	Style	Notes
UG-29,A,B	Str $(\mathrm{f} / \mathrm{f})$	50Ω, TFE ins.
UG-57A.B	Str $(\mathrm{m} / \mathrm{m})$	50Ω, TFE ins.
UG-27A,B	Ang $(\mathrm{f} / \mathrm{m})$	Mitre body
UG-212A	Ang $(\mathrm{f} / \mathrm{m})$	Mitre body
UG-107A	T $(\mathrm{f} / \mathrm{m} / \mathrm{f})$	-
UG-28A	T $(\mathrm{f} / \mathrm{f} / \mathrm{f})$	-
UG-107B	T $(\mathrm{f} / \mathrm{m} / \mathrm{f})$	-

Family Characteristics:

N connectors with gaskets are weatherproof. RF leakage: $-90 \mathrm{~dB} \min @ 3 \mathrm{GHz}$. Temperature limits: TFE: -67° to $390^{\circ} \mathrm{F}\left(-55^{\circ}\right.$ to $\left.199^{\circ} \mathrm{C}\right)$. Insertion loss 0.15 dB max @ 10 GHz . Copolymer of styrene: -67° to $185^{\circ} \mathrm{F}$ $\left(-55^{\circ}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$. Frequency range: $0-11 \mathrm{GHz}$. Maximum voltage rating: $1500 \mathrm{~V} \mathrm{P}-\mathrm{P}$. Dielectric withstanding voltage 2500 V RMS. SWR (MIL-C-39012 cable connectors) $1.3 \mathrm{max} 0-11 \mathrm{GHz}$.

BNC Connectors

Military No.	Style	Cable RG-	Notes
UG-88C	Str (m)	$55,58,141,142,223,400$	
UG-959	Str (m)	8,9	
UG-260,A	Str (m)	$59,62,71,140,210$	Rexolite ins.
UG-262	Pnl (f)	$59,62,71,140,210$	Rexolite ins.
UG-262A	Pnl (f)	$59,62,71,140,210$	nwx, Rexolite ins.
UG-291	Pn (f)	$55,58,141,142,223,400$	
UG-291A	Pnl (f)	$55,58,141,142,223,400$	nwx
UG-624	Blkhd (f)	$59,62,71,140,210$	Front mount Rexolite ins.
UG-1094A	Blkhd	Standard	
UG-625B	Receptacle		
UG-625			

BNC Adapters

Military No.	Style	Notes
UG-491,A	Str $(\mathrm{m} / \mathrm{m})$	
UG-491B	Str $(\mathrm{m} / \mathrm{m})$	Berylium, outer contact
UG-914	Str $(\mathrm{f} / \mathrm{f})$	
UG-306	Ang $(\mathrm{f} / \mathrm{m})$	
UG-306A,B	Ang $(\mathrm{f} / \mathrm{m})$	Berylium outer contact
UG-414,A	Pnl $(\mathrm{f} / \mathrm{f})$	\# 3-56 tapped flange holes
UG-306	Ang $(\mathrm{f} / \mathrm{m})$	
UG-306A,B	Ang $(\mathrm{f} / \mathrm{m})$	Berylium outer contact
UG-274	T $(\mathrm{f} / \mathrm{m} / \mathrm{f})$	
UG-274A,B	T $(\mathrm{f} / \mathrm{m} / \mathrm{f})$	Berylium outer contact

Family Characteristics:

$Z=50 \Omega$. Frequency range: 0-4 GHz w/low reflection; usable to 11 GHz . Voltage rating: 500 V P-P. Dielectric withstanding voltage 500 V RMS. SWR: $1.3 \mathrm{max} 0-4 \mathrm{GHz}$. RF leakage -55 dB min @ 3 GHz . Insertion loss: 0.2 dB max @ 3 GHz . Temperature limits: TFE: -67° to $390^{\circ} \mathrm{F}\left(-55^{\circ}\right.$ to $\left.199^{\circ} \mathrm{C}\right)$; Rexolite insulators: -67° to $185^{\circ} \mathrm{F}\left(-55^{\circ}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$. "Nwx" $=$ not weatherproof.

Continued on next page.

Coaxial Cable End Connectors

Continued from previous page.

HN Connectors

Military No.	Style	Cable RG-	Notes
UG-59A	Str (m)	8, 9, 213, 214	
UG-1214	Str (f)	$8,9,87,213,214,225$	Captivated contact
UG-60A	Str (f)	$8,9,213,214$	Copolymer of styrene ins.
UG-1215	Pnl (f)	$8,9,87,213,214,225$	Captivated contact
UG-560	Pnl (f)		
UG-496	Pll (f)		Berylium outer contact

Family Characteristics:

Connector Styles: Str = straight; Pnl = panel; Ang = Angle; Blkhd = bulkhead. Z = 50Ω. Frequency range = $0-4 \mathrm{GHz}$. Maximum voltage rating $=1500 \mathrm{~V}$ P-P. Dielectric withstanding voltage $=5000 \mathrm{~V}$ RMS SWR $=1.3$. All HN series are weatherproof. Temperature limits: TFE: -67° to $390^{\circ} \mathrm{F}\left(-55^{\circ}\right.$ to $199^{\circ} \mathrm{C}$); copolymer of styrene: -67° to $185^{\circ} \mathrm{F}\left(-55^{\circ}\right.$ to $85^{\circ} \mathrm{C}$).

Cross-Family Adapters

Families	Description	Military No.
HN to BNC	HN-m/BNC-f	UG-309
N to BNC	N-m/BNC-f	UG-201,A
	N-f/BNC-m	UG-349,A
	N-m/BNC-m	UG-1034
N to UHF	N-m/UHF-f	UG-146
	N-f/UHF-m	UG-83,B
	N-m/UHF-m	UG-318
UHF to BNC	UHF-m/BNC-f	UG-273
	UHF-f/BNC-m	UG-255

[^0]: *Applies to capacitors only

[^1]: * For package shape, size and pin-connection information, see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.

[^2]: $\pm \pm 1.5 \mathrm{~V}$.
 ${ }^{8}$ Values are for two tubes．

 Single tone．
 ${ }^{0} 24-\Omega$ catho
 ${ }^{10} 24-\Omega$ cathode resistance
 1
 Base same as $4 \mathrm{C} \times 250 \mathrm{~B}$,
 Socket is Russian
 ${ }^{13}$ Socket is Russian SK3A．

[^3]: ${ }^{2}$ Maximum signal value．
 Peak grid－to－grid volts．
 ${ }^{5}$ Two tubes triode connected，G2 to G1 through
 ${ }^{6}$ Typical operation at 175 MHz ．

 SERVICE CLASS ABBREVIATIONS：
 $A B_{2} G D=A B_{2}$ linear with $50-\Omega$ passive grid driver
 circuit．
 $C M=$ Frequency multiplier.
 $C P=$ Class $-C$ plate－modulat
 $C M=$ Frequency multiplier．
 CTO $=$ Class－C amplifier－oscillator．
 $-$
 GG $=$ Grounded－grid（grid and screen connected together）．

[^4]: Note: For $A B_{1}$ operation, inout data is average
 2 -tone value. Outpu' Dower is PEP.

[^5]:

[^6]: ov-2, V.1, and V-0 grades are also available. *At 1.0 MHz
 ${ }^{2}$ Test specinang
 aTest specimen molding condilions, 27 mold temperatura
 bRepresentative of a series of various pigmented compounds.

